STWS: A Unified Web Service for IEEE 1451 Smart Transducers
Eugene Y. Song, Kang B. Lee

National Institute of Standards and Technology

100 Bureau Drive, MS# 8220

Gaithersburg, Maryland USA 20899-8220

Phone: (301) 975-6542, (301) 975-6604

E-Mail: ysong@nist.gov, kang.lee@nist.gov

Abstract - This paper describes a unified web service for the Institute of Electrical and Electronics Engineers (IEEE) 1451 smart transducer standards - Smart Transducer Web Services (STWS) developed at the National Institute of Standards and Technology (NIST) based on the IEEE 1451.0 standard. A STWS prototype system developed at NIST consists of a service consumer, service provider (wireless network node), and wireless sensor node. The service consumer and provider communicate with each other through Simple Object Access Protocol (SOAP) messages using the IEEE 1451.0 and 1451.5-WiFi interfaces. The prototype system was successfully tested through case studies, and a case study of reading transducer data is described in detail. The STWS enable Web-resident IEEE 1451 smart transducers (sensors and actuators) to be discoverable, accessible, and controllable using Web services via the Internet, and to achieve standards-based interoperability for smart transducer applications.
Keywords: IEEE 1451.0, IEEE 1451.5, NCAP, Service-oriented Architecture, Smart Transducer Web Services, STWS, SOAP, TEDS, TIM, Web Service, WSDL

I. INTRODUCTION

A smart transducer is the integration of an analog or digital sensor or actuator element, a processing unit, and a communication interface [1]. A smart transducer is a compact unit containing a sensor or actuator element, a microcontroller, a communication controller and the associated software for signal conditioning, calibration, diagnostics, and communication [2]. A smart transducer provides functions beyond those necessary for generating a correct representation of a sensed or controlled quantity. The features of a smart transducer include self-identification, self-diagnosis, location-awareness, data process and fusion, and network communication [3-4]. This functionality typically simplifies the integration of the transducer into applications in a networked environment.
A smart transducer model shown in Figure 1 consists of transducers (sensors and actuators), signal conditioning and data conversion, application processor, and network communication. The analog output of a sensor is conditioned and amplified, then converted to a digital format by an analog-to-digital (A/D) converter. The digitized sensor signal can then be easily processed by a microprocessor using an application algorithm. The measured or calculated parameters can be passed on to a host or monitoring system through the network by means of network communication protocols. In a reverse manner, a command sent from a host via the network can be used to control an actuator.
[image: image1.emf]Application

Processor

Signal

Conditioning

and

Data

Conversion

Transducers

(Sensors

and

Actuators)

Smart

Transducer

Network

Network

Communication

Fig.1. Smart Transducer Model.
The Institute of Electrical and Electronics Engineers (IEEE) 1451 family of standards defines a set of common communication interfaces for connecting smart transducers to microprocessor-based systems, instruments, and networks in a network-independent environment. Figure 2 shows the IEEE 1451 family of standards. The IEEE 1451 standard divides the smart transducer into two major components, a Network Capable Application Processor (NCAP) and Transducer Interface Module (TIM) which are connected by a transducer independent interface. The NCAP, a network node, performs application processing and network communication functions, while the TIM consists of a number of sensors and actuators, and a signal conditioning and data conversion unit. The transducer independent interface defines a communication medium and a protocol for transferring the commands and sensor information between the NCAP and TIM. The IEEE 1451 standards define a set of protocols for wired and wireless distributed applications [3-4]. The IEEE 1451.0 standard defines a common set of commands, an electronic data sheet format, and communication protocols for the IEEE 1451 family of standards [4]. As shown in Figure 2, two network communication interfaces are used to access IEEE 1451 smart transducers: the IEEE 1451.1 communication protocols, and IEEE 1451.0 HTTP (Hypertext Transfer Protocol). The IEEE 1451.1 mainly focuses on the client-server and publisher-subscriber communication protocols of networked smart transducers [5-6]. The IEEE 1451.0 HTTP protocol mainly focuses on the HTTP web access to smart transducers [4].
[image: image2.emf]Any

Network

IEEE

1451.X

IEEE

1451.0

NCAP

(Network Capable Application Processor)

1451.X

PHY

(Physical

Layer)

Transducer

Transducer

Transducer

Transducer

IEEE

1451.2

1451.3

1451.5

p1451.6

P1451.7

IEEE

1451.X

IEEE

1451.0

TIM

(Transducer Interface Module)

Signal

Conditioning

&

Data

Conversion

1451.X

PHY

TEDS

1451.0

TEDS

IEEE 1451.1

IEEE 1451.0

HTTP Protocol

Smart Transducer

Web Services

Fig.2. IEEE 1451 family of standards.
This paper presents a set of Web services, designated as Smart Transducer Web Services (STWS), for accessing IEEE 1451 smart transducers (see Figure 2). The STWS are based on the Service-oriented Architecture (SOA). The SOA is an evolution of distributed computing based on the request/response design paradigm for synchronous and asynchronous applications [7]. The most important aspect of a Web service is the service description using the Web Services Description Language (WSDL) that describes the messages, types, and operations of the Web service, and the contract to which the Web service guarantees that it will conform [8]. The SOA provides standards-based, platform, language, and operating-system-independent interoperability among software applications. Therefore, applying the SOA to sensors and sensor networks is an important step forward to configuring the sensors as reusable resources, which can be discoverable, accessible, and controllable via the Internet. The goals of STWS are to allow Web-resident IEEE 1451 smart transducers to be discoverable, accessible, and controllable using Web services via the Internet and to achieve standards-based interoperability for smart transducer applications.
II. RELATED WORK

Sensor Web is a new class of Geographic Information System (GIS), developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL), consisting of a sensor network for environmental monitoring and control [9]. Sensors are able to return their location information as well as observations and measurements via the World Wide Web. The final missing element for Sensor Web is a universal framework for describing and tasking sensors in XML (eXtensible Markup Language) [10]. Open Geospatial Consortium - Sensor Web Enablement (OGC-SWE) members have developed and tested the following candidate specifications: Observations & Measurements (O&M), Sensor Model Language (SensorML), Transducer Model Language (TML), Sensor Observations Service (SOS), Sensor Planning Service (SPS), Sensor Alert Service (SAS), and Web Notification Services (WNS) [11]. The IEEE 1451 standards deal with sensor information from physical sensors to the network level, while the OGC-SWE takes the sensor information, and brings it into applications, in particular via the Web. There is a great opportunity to apply these two sets of standards together to ultimately achieve the ease of use of sensors and ability to transfer sensor information from sensors to applications in a seamless way using consensus-based standards [12]. Therefore, the SOA is the proposed method to seamlessly integrate the IEEE 1451 with the OGC-SWE standards, and other sensor applications. A Web service based on the IEEE 1451.1 standard is described in the references [13-14]. The IEEE 1451.0 standard provides a common set of commands, electronic data sheet formats, and communication protocols for the IEEE 1451 family of standards. The STWS are based on the IEEE 1451.0 standard and provide a good solution for achieving seamless integration and interoperability among the IEEE 1451 standards, the OGC-SWE, sensor alert, and other sensor applications.

III. WEB SERVICE FOR IEEE 1451 SMART TRANSDUCERS
A. WSDL-based STWS Interoperability

Web Services Interoperability (WS-I) provides supporting implementation guidance and testing resources for each of the profiles it develops. The first profile of the WS-I is the Basic Profile that is a set of Web services specifications. The WS-I Basic Profile pertains to the most basic Web services, such as XML Schema 1.0, SOAP 1.1, WSDL 1.1, and Universal Description Discovery and Integration (UDDI) 2.0 [15]. Hence the WS-I allows standards-based interoperability to be achieved via the Web service defined in the WSDL.
[image: image3.emf]WSDL

(Smart Transducer Web Services)

(IEEE 1451.0 Std.)

1451.0 XML

Schema

(XSD)

Service Consumer

(Sensor Application)

(C#)

Service Consumer

(Sensor Application)

(Java)

Service Consumer

(Sensor Application)

(C++)

Service Provider

(Java)

(IEEE 1451.0 Std.)

WSDL2Java

WSDL2C#

WSDL2C++

WSDL2Java

SOAP/XML Message

SOAP/XML Message

SOAP/XML Message

WSDL

(Smart Transducer Web Services)

(IEEE 1451.0 Std.)

1451.0 XML

Schema

(XSD)

Service Consumer

(Sensor Application)

(C#)

Service Consumer

(Sensor Application)

(Java)

Service Consumer

(Sensor Application)

(C++)

Service Provider

(Java)

(IEEE 1451.0 Std.)

WSDL2Java

WSDL2C#

WSDL2C++

WSDL2Java

SOAP/XML Message

SOAP/XML Message

SOAP/XML Message

Fig.3. WSDL-based STWS interoperability.
Figure 3 shows an example of WSDL-based STWS interoperability. The STWS based on the IEEE 1451.0 standard have been defined using WSDL. The service provider can be generated from the WSDL file using Web service development tools in programming languages such as Java. On the other hand, the Web service consumers also can be generated from the deployed WSDL file in different programming languages such as Java, C#, or C++. The service consumers such as sensor alert systems, OGC-SWE, or sensor applications, can be interoperable with the service provider through SOAP/XML messages.

B. Architecture of Smart Transducer Web Services for IEEE 1451 Standard

Figure 4 shows the architecture of the STWS for the IEEE 1451 standards. An IEEE 1451 NCAP can be used as a STWS provider, which provides a set of Web services of the STWS. The STWS consumers, such as sensor alert systems, the OGC-SWE, or other sensor applications, can find the STWS deployed and then invoke the STWS through SOAP/XML messages. The STWS consumer sends a request to the STWS provider for sensor data. When the STWS provider receives the request, it invokes the responding web service of the STWS based on the request and communicates with a TIM for sensor data through the IEEE 1451.x communication modules. Then, the TIM returns the requested sensor information to the STWS provider (NCAP). Finally the STWS provider sends the sensor information back to the STWS consumer using SOAP/XML messages.
[image: image4.emf]IEEE

1451.2

1451.3

1451.5

p1451.6

p1451.7

IEEE 1451.0 Transducer Services

IEEE 1451.X

Communication Module

IEEE 1451.X

Communication Module

IEEE 1451.0 Transducer Services

Signal Conditioning and Conversion

Transducer

1451.X

PHY TEDS

IEEE 1451

NCAP

(STWS Provider)

IEEE 1451

TIM

IEEE 1451.X

PHY Layer

Transducer

Transducer

Internet

1451.0

TEDS

Smart Transducer

Web Services Client

Sensor Application

(STWS Consumer)

Smart Transducer Web Services

Unified Web Service

IEEE

1451.2

1451.3

1451.5

p1451.6

p1451.7

IEEE 1451.0 Transducer Services

IEEE 1451.X

Communication Module

IEEE 1451.X

Communication Module

IEEE 1451.0 Transducer Services

Signal Conditioning and Conversion

Transducer

1451.X

PHY TEDS

IEEE 1451

NCAP

(STWS Provider)

IEEE 1451

TIM

IEEE 1451.X

PHY Layer

Transducer

Transducer

Internet

1451.0

TEDS

Smart Transducer

Web Services Client

Sensor Application

(STWS Consumer)

Smart Transducer Web Services

Unified Web Service

Fig.4. Architecture of STWS for IEEE 1451.
C. STWS: A Unified Web Service for IEEE 1451 Smart Transducers

Figure 5 shows that the STWS work as a unified web service for IEEE 1451 smart transducers. As shown, it works with five types of sensor networks based on the IEEE 1451: the sensor network based on the IEEE p1451.2-RS232 [16], the wireless sensor network based on the IEEE 1451.5-Bluetooth, the IEEE 1451.5-WiFi [17], the IEEE 1451.5-Zigbee, and the IEEE 1451.5-6LowPAN. The NCAP, a gateway of wired or wireless sensor networks, is a STWS provider. The STWS consumer can access any NCAP using SOAP/XML messages for sensor information, and the NCAP can communicate with the sensor nodes for sensor data, and sensor TEDS in a wired or wireless way. Hence, the STWS provide a unified Web service for IEEE 1451 smart transducers.

[image: image5.emf]Smart Transducer

Web Services Client

Sensor Application

(STWS Consumer)

Internet

IEEE

1451.5

ZigBee

Wireless

Sensor

Network

IEEE

1451

WTIM







Smart Transducer

Web Services

IEEE

IEEE 1451.0

IEEE

1451.5-ZigBee

Transducers

IEEE 1451.0

IEEE 1451.5-

ZigBee

Transducers

IEEE 1451.0

IEEE 1451.5-

ZigBee

Transducers

IEEE 1451.0

IEEE 1451.5-

ZigBee

IEEE

1451

NCAP

(STWS

Provider)

IEEE

1451.5

WiFi

Wireless

Sensor

Network

IEEE

1451

WTIM







Smart Transducer

Web Services

IEEE 1451.0

IEEE

1451.5-WiFi

Transducers

IEEE 1451.0

IEEE 1451.5-

WiFi

Transducers

TIM 1451.0

TIM 1451.5-

WiFi

Transducers

IEEE 1451.0

IEEE 1451.5-

WiFi

IEEE

1451

NCAP

(STWS

Provider)

IEEE

1451.5

Bluetooth

Wireless

Sensor

Network

IEEE

1451

WTIM







Smart Transducer

Web Services

NCAP

IEEE 1451.0

IEEE

1451.5-Bluetooth

Transducers

IEEE 1451.0

IEEE 1451.5-

Bluetooth

Transducers

IEEE 1451.0

IEEE 1451.5-

Bluetooth

Transducers

IEEE 1451.0

IEEE 1451.5-

Bluetooth

IEEE

1451

NCAP

(STWS

Provider)

IEEE

p1451.2

RS-232

Sensor

Network

IEEE

1451

TIM

Smart Transducer

Web Services

IEEE 1451.0

IEEE

p1451.2-RS232

Transducers

IEEE 1451.0

IEEE p1451.2-

RS232

IEEE

1451

NCAP

(STWS

Provider)

IEEE

1451.5

6LowPAN

Wireless

Sensor

Network

IEEE

1451

WTIM







Smart Transducer

Web Services

IEEE 1451.0

IEEE

1451.5-6LowPAN

Transducers

IEEE 1451.0

IEEE 1451.5-

6LowPAN

Transducers

IEEE 1451.0

IEEE 1451.5-

6LowPAN

Transducers

IEEE 1451.0

IEEE 1451.5-

6LowPAN

IEEE

1451

NCAP

(STWS

Provider)

Fig.5. STWS: A unified web service for IEEE 1451 smart transducers.
IV. SMART TRANSDUCER WEB SERVICES DESCRIPTION IN WSDL

A. IEEE 1451.0 Transducer Services

The transducer services defined in the IEEE 1451.0 are used to access sensors and actuators in IEEE 1451.0-based networks. The transducer services contain operations to read and write transducer (sensor or actuator) channels, read and write TEDS, and send configuration, control, and operation commands to the TIMs. The transducer services of the IEEE 1451.0 contain six kinds of services: TimDiscovery, TransducerAccess, TransducerManager, TedsManager, CommManager, and AppCallback [4]. The STWS are defined based on these transducer services of the IEEE 1451.0 standard in the WSDL.

B. Smart Transducer Web Services Description in WSDL

The WSDL is an XML-based language that provides a model for describing Web services. The WSDL is an XML format for describing network services as a set of endpoints operating on messages. The operations and messages are described abstractly, and then bound to a concrete network protocol and message format to define an endpoint. We have defined the STWS based on the IEEE 1451.0 transducer services using an XML tool. The WSDL specification is divided into six major elements: definitions, types, messages, portType, binding, and service. The detailed definitions of the WSDL are described in reference [18].
B.1 Definitions of the STWS
The definition elements define the name of the Web service, declare multiple namespaces used, and contain all the service elements.

B.2 Types of the STWS
The type elements describe all the data types used in the communications between the service provider and consumer. The type elements enclose data type definitions that are relevant to the exchanged messages. All data types of the STWS include the simple and complex data types, Transducer Electronic Data Sheets (TEDS) of the IEEE 1451.0 standard, and the types used in the request and response messages. Detailed information of XML schemas of IEEE 1451.0 data types and TEDS is presented in the reference [4].
B.3 Messages of the STWS
The message elements define the name of the message, and contain one or more message part elements, which can be referred to message parameters or message return values.
B.4 PortType of the STWS
The portType element describes a Web service with the operations that can be performed, and the messages involved. A port type is a named set of abstract operations and the abstract messages involved. The portType defines multiple operations, which are based on the IEEE 1451.0 transducer services.
B.5 Binding of the STWS
The binding element describes how the services can be implemented on the network. The WSDL specifies the style of the binding as either RPC (Remote Procedure Call) or Document. For the Document, the content of <soap:body> is specified by XML Schema defined in the WSDL type section. It does not need to follow specific SOAP conventions. We use SOAP Document/Literal style.
B.6 Service Port of the STWS
The service element defines the address for invoking the specified service. Most commonly, this includes a Uniform Resource Locator (URL) for invoking the SOAP service.
Figure 6 shows a screenshot of the successfully deployed WSDL file of the STWS. The STWS include TimDiscovery, TransducerDiscovery, ReadTransducerData, and ReadTimMetaIDTeds services. The STWS are described in WSDL in order to easily achieve interoperability with sensor applications.

[image: image6.png]Fle Edt View Favorites Took Help | &
Qe ~ © ~ [¥] [D] Pseach eravotes €] 2~ L F R B

Address [&] http:/flocalhost:B080/SmartTransducer Services/SmartTransducerServicesPWSDL ~| &eo ‘L\nks >
Google G- ~lco|® & & ~ | ¥ Bookmarks~ S0 blocked | % check ~ N Autolirk ~ | ALiorl [Send to~ O settings~

<74l version="1.0" encoding="UTF-8" 7>
<definitions xmins="http://schemas.xmisoap.org/wsdl/" xmins: soap="http://schemas.xmlsoap.org/wsdl/soap/"
srmilns: http="http://schemas.xmlsoap.org/wsdl/http/" «rmins: xs="http:/ /vivivi.vi3.0rg/2001/XMLSchema"
srmins: soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmins: mime="http://schemas..xmisoap.org/wsdl/mime/"
srilns: stril="http:/ /localhost/SmartTransducerServices" targethamespace="http://localhost/SmartTransducerServices">
<types>
<message name="ReadTransducerDataRequest’>
<message name="ReadTransducerDataResponse's
scoveryRequest'>
<message name="TransducerDiscoveryResponse's
<message name="ReadTimMetalDTedsRequest">
<part name="requestParameters" clement="stml:ReadTimMetalDTedsSer
</message>
- <message name="ReadTimMetalDTedsResponse’>
<part name="responseParameters" clement="stml:ReadTimMetalDTedsServiceResponse” />
</message>
+ <message name:

P

eRequest’ />

imDiscoveryRequest'>
+ <message name="TimDiscoveryResponse">
- <portType name="SmartTransducerServicePortType'>
+ <operation name="TransducerDiscovery'>
+ <operation name="ReadTransducerData">
- <operation name="ReadTimMetalDTeds">
<input message="stml:ReadTimMetaIDTedsRequest" />
<output message="stml:ReadTimMetalDTedsResponse" />
</operation.
+ <operation name="
</portType>
- <binding name="SmartTransducerServicesBinding’ type="stml:SmartTransducerservicePortType'>
<soap:binding style="document” transport="http://schemas.xmlsoap.org/soap/http" />
+ <operation name="TransducerDiscovery'>
+ <operation name="ReadTransducerData">
- <operation name="ReadTimMetalDTeds">
<s0ap:operation soapaction="urn:#Read
- <input>
<soap:body use="literal" />
</input>
- <output>
<soap:body use="literal" />
</output>
</operation>
+ <operation name="
</binding>
- <wsdl:service xrins:wsdi="http://schemas xmlisoap.org/wsdl/" name="SmartTransducerServices'>
- <wsdl:port name="SmartTransducerServicePortTypePort" binding="stml:SmartTransducerServicesBinding'>
<soap: address location="http://sdages.sensor.intranet:8080/SmartTransducerServices/SmartTransducerServices'
srilns: xsc="http:/ /veveve.w3.0rg/2001/XMLSchema” />
</wsdl:port>
</wsdl:service>
</definitions>

imbDiscovery">

MetalDTeds" />

mDiscovery'>

[&]

%J Local infranet.

Fig.6. Deployed WSDL file.
V. A PROTOTYPE SYSTEM OF SMART TRANSDUCER WEB SERVICES

A. A STWS Prototype System
Figure 7 shows a STWS prototype system consisting of a service consumer, service provider (NCAP), and wireless sensor node (TIM). The NCAP is a STWS provider, on which the STWS run. The service consumer can find the Web services of the STWS, and then invokes these Web services on the NCAP using SOAP/XML messages. The STWS consumer and provider communicate to each other using SOAP/XML messages. The STWS provider can be generated from the developed WSDL file using the NetBeans** Web service development tool. Creating a Web service provider from the WSDL file involves the following steps:
1) specify a name for the Web service provider;
2) specify the location of the WSDL file;
3) the tool automatically generates web services;
4) implement the Web services by adding source code, for example, to implement TIM discovery or read TEDS function; 5) test Web services; and
6) deploy the Web services.

The STWS consumer can be generated from the deployed WSDL file using the Web service development tool. Creating a Web service consumer involves the following steps:
1) specify a name for the Web services consumer;
2) specify the location where the WSDL file was deployed by the provider;
3) the tool automatically generates a Web services client;
4) implement a specific Web services client by adding source code such as a JSP (Java Server Page), to invoke or call the Web services;
5) test Web service client; and
6) deploy the Web services client
[image: image7.emf]Internet

Smart Transducer

Web Services

Provider

Smart Transducer

Web Services

Consumer

IEEE 1451.5-WiFi

Access

Point

Sensors

Serial

Cable

SOAP/XML

SOAP

Request

SOAP

Response

Smart Transducer

Web Services

NCAP

IEEE 1451.0

IEEE 1451.5-WiFi

Sensor

Actuator

IEEE 1451.5-WiFi

TIM

IEEE 1451.5-WiFi

Smart Transducer

Web Services Client

Fig.7. Prototype STWS system.

The IEEE 1451.2 standard defines a transducer interface for connecting sensors and actuators to microprocessors, instruments, and networks [19]. Accessing IEEE 1451.2 sensor data and TEDS are used as examples to test the STWS system using the IEEE 1451.0 and 1451.5 standards [20-21]. The communication processes between the NCAP and the TIM can be described as follows [20-22]: Firstly, when the STWS on the NCAP are successfully deployed, the communication module of the NCAP registers to the NCAP. When the TIM is powered up, the communication module of the TIM registers to the TIM, and the TIM automatically does a TIM announcement to the NCAP. Secondly, the NCAP discovers all TIMs announced or registered to the NCAP. Next, the NCAP discovers all TransducerChannels (sensor and actuator) of the specified TIM. Then, the NCAP sends requests to the TIM for reading transducer data, and reading transducer TEDS data.
We have successfully tested the STWS through the following four case studies: TIMDiscovery, TransducerDiscovery, ReadTimMetaIDTEDS, and ReadTransducerData services. The TIMDiscovery service discovers all the TIMs announced to the NCAP, and gets all the timIds of the TIMs. The TransducerDiscovery service can be invoked. It gets all channelIds and channelNames of the specified TIM. The ReadTimMetaIDTeds service is used to get the MetaIdTEDS of the specific TIM and the ReadTransducerData service is used to read transducer data from specific transducerChannel of the specific TIM. The detailed description of the ReadTransducerData service is shown as follows:
B. Case Study of ReadTransducerData Service

The ReadTransducerData service is used to get transducer data from the specific transducerChannel of the specific TIM. Figure 8 shows the XML schema of ReadTransducerDataServiceRequest, which includes timId, transducerId, timeout, and smaplingCode. Figure 9 shows the screenshot of the user interface of the ReadTransducerData service request.

[image: image8.emf]
Fig.8. XML schema of reading transducer data service request.
[image: image9.emf]
Fig.9. Screenshot of reading transducer data service request.

Figure 10 shows the sequence diagram of the ReadTransducerData service. It shows the detailed processes of the ReadTransducerData service. When a user inputs the required parameters and submits the request to the Web server through the Hyper Text Markup Language (HTML) form, the request parameters submitted can be retrieved. Then the JSP calls the ReadTransducerData service on the NCAP by sending the request XML message. After the STWS service provider in the NCAP receives the request XML message, it wirelessly communicates with the IEEE 1451.5-WiFi TIM to obtain sensor data from the specific transducer channel (#2) of the specific TIM with a timId (#11). When the TIM gets the request, it reads the sensor data from TransducerChannel (#2) and sends the sensor data to the NCAP, which in turns forwards the sensor data to the STWS client through the response XML message.

[image: image10.emf]STWS (NCAP)

IEEE 1451.5-WiFi TIM

NCAP

Dot5

WIFI

App

NCAP

Dot5

WIFI

NetComm

Net

Two

Way

Client

Net

Two

Way

Server

TIM

Dot5

WIFI

NetComm

read()

notifyRsp()

readRsp()

writeMsg()

SendRequest()

send()

sendResponse()

send()

receive()

Dot2

Sensor

Data

Access

TIM

Dot5

WIFI

App

notifyMsg()

writeRsp()

readMsg()

readDot2SensorCh2data()

getSensorData()

Smart

Transducer

Web

Service

Read

Transducer

Data.

jsp

Read

Transducer

Data.

html

submit

ReadTransducerData

(SOAP Message)

(RequestParameters)

getParameters()

ReadDot2SensorData()

ReadTransducerData

(SOAP Message)

(ResponseParameters)

STWS Client

Return

Sensor data

receive()

STWS (NCAP)

IEEE 1451.5-WiFi TIM

NCAP

Dot5

WIFI

App

NCAP

Dot5

WIFI

NetComm

Net

Two

Way

Client

Net

Two

Way

Server

TIM

Dot5

WIFI

NetComm

read()

notifyRsp()

readRsp()

writeMsg()

SendRequest()

send()

sendResponse()

send()

receive()

Dot2

Sensor

Data

Access

TIM

Dot5

WIFI

App

notifyMsg()

writeRsp()

readMsg()

readDot2SensorCh2data()

getSensorData()

Smart

Transducer

Web

Service

Read

Transducer

Data.

jsp

Read

Transducer

Data.

html

submit

ReadTransducerData

(SOAP Message)

(RequestParameters)

getParameters()

ReadDot2SensorData()

ReadTransducerData

(SOAP Message)

(ResponseParameters)

STWS Client

Return

Sensor data

receive()

Fig.10. Sequence diagram of ReadTransducerData service.
[image: image11.emf]
Fig.11. XML schema of ReadTransducerDataServiceResponse.

 [image: image12.emf]
Fig.12. Screenshot of reading illumination sensor data.
Figure 11 shows the XML schema of ReadTransducerDataServiceResponse, which includes timId, transducerId, and transducer data (StringArray). Figure 12 shows a screenshot of the ReadTransducerDataSserviceResponse. As shown in the figure, the illumination sensor shows transducer data of twenty illumination readings.
VI. CONCLUSION

This paper describes a unified Web service for the IEEE 1451 smart transducers, which was developed at NIST and designated as the Smart Transducer Web Services based on the IEEE 1451.0 standard. A STWS prototype system consisting of a service consumer, service provider (NCAP), and wireless sensor node (TIM) was described. The service consumer and provider can communicate with each other through SOAP messages. The STWS were successfully tested with case studies; a case study of reading transducer data service is described in detail. The STWS described in this paper provide a standardized way for sensor applications to access and interoperate with IEEE 1451 smart transducers. It lays a good foundation for the standardization of the Smart Transducer Web Services.
** Commercial equipment and software, many of which are either registered or trademarked, are identified in order to adequately specify certain procedures. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

REFERENCES

1. Wilfried Elmenreich, Stefan Pizek, “Smart Transducers–Principles, communications, and configuration”, Proceedings of the 7th IEEE International Conference on Intelligent Engineering Systems (INES), Assuit, Luxor, Egypt, March 2003, pp.510 -515.
2. Smart Transducers Interface Specification. [Online]. Available: http://www.omg.org/docs/formal/03-01-01.pdf.
3. Lee, K., “IEEE 1451: A Standard in Support of Smart Transducer Networking”, Proceedings of the 17th IEEE Instrumentation and Measurement Technology Conference, Baltimore, Maryland, May 1-4, 2000, Vol. 2, pp. 525-528.

4. Lee, Kang B, Song, Eugene Y, “Object-oriented application framework for IEEE 1451.1 standard”, IEEE Transactions on Instrumentation and Measurement, Vol. 54, No. 4, August, 2005, pp.1527-1533.
5. Lee, K.B., Schneeman, R.D., “Distributed measurement and control based on the IEEE 1451 smart transducer interface standards”, Instrumentation and Measurement, IEEE Transactions on Vol. 49, No. 3, June 2000, pp.621-627.
6. IEEE 1451.0, Standard for a Smart Transducer Interface for Sensors and Actuators–Common Functions, Communication Protocols, and Transducer Electronic Data Sheet (TEDS) Formats, IEEE Instrumentation and Measurement Society, TC-9, The Institute of Electrical and Electronics Engineers, Inc., New York, N.Y. 10016.

7. Service-Oriented Architecture, [Online]. Available: http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html

8. An Introduction to Service-Oriented Architecture from a Java Developer Perspective, [Online]. Available: http://www.onjava.com/pub/a/onjava/2005/01/26/soa-intro.html.
9. Sensor Web, [Online]. Available: http://en.wikipedia.org/wiki/Sensor_Web.
10. Mark Reichardt, The Sensor Web's Point of Beginning, [Online]. Available: http://www.geospatial-online.com/geospatialsolutions/article/articleDetail.jsp?id=52681

11. Carl Reed, Mike Botts, John Davidson, and George Percivall, “OGC Sensor Web Enablement: Overview and High-level Architecture”, 2007 IEEE AUTOTESTCON, Baltimore, Maryland, Sept. 17-20, 2007, pp.372-380.
12. Lee, K. B., Reichardt, Mark. E., “Open Standards for Homeland Security Sensor Networks”, IEEE Instrumentation & Measurement Magazine, Dec. 2005, Vol. 8, No. 5, pp.14- 21.
13. Eamil F. Sadok, Ramiro Liscano, “A Web-services framework for 1451 sensor networks”, IMTC 2006 Instrumentation and measurement technology conference, Ottawa, Canada, May 17-19, 2005, pp.554-559.
14. Vitor Viegas, J.M.Dias Pereira, P. Silva Firao, “IEEE 1451.1 standard and XML web services: a powerful combination to build distributed measurement and control systems”, IMTC 2006-Instrumentation and measurement technology conference, Sorrento, Italy, April 24-27, 2006, pp.2373-2377.
15. Web service Interoperability, [Online]. Available: http://www.ws-i.org/about/Default.aspx.
16. Eugene Y. Song, Kang Lee, “Sensor Network based on IEEE 1451.0 and p1451.2-RS232”, 2008 I2MTC-International Instrumentation & Measurement Technology Conference, Victoria, Vancouver Island, British Columbia, Canada, May 12-15, 2008, pp.1-6, submitted.
17. Kang Lee, Eugene Song, “Wireless Sensor Network Based on IEEE 1451.0 and IEEE 1451.5-802.11”, The proceedings of Eighth International Conference on Electronic Measurement and Instruments, Vol. Ⅳ, ICEMI’2007, Xian, China, August 16-18, 2007, pp.4-7.
18. Eugene Song, Kang Lee, “Smart transducer web service based on IEEE 1451.0 standard”, IMTC 2007-Instrumentation and Measurement Technology Conference. WARSAW, POLAND, MAY 1-3, 2007, pp.1-6.
19. IEEE STD 1451.2-1997, Standard for a Smart Transducer Interface for Sensors and Actuators–Transducer to Microprocessor Communication Protocols and Transducer Electronic Data Sheet (TEDS) Formats, IEEE Instrumentation and Measurement Society, TC-9, The Institute of Electrical and Electronics Engineers, Inc., New York, N.Y. 10016, SH94566, Sept. 25, 1998.

20. Eugene Song, Kang Lee, “An implementation of the proposed IEEE 1451.0 and 1451.5 standards”, SAS 2006 IEEE Sensors and Applications Symposium, Houston, Texas, February 7-9, 2006, pp.72-77.
21. Eugene Y. Song, Kang Lee, “Understanding IEEE 1451-Networked smart transducer interface standard”, IEEE Instrumentation & Measurement Magazine, Vol.11, No. 2, 2008, pp.11-17
22. IEEE 1451.5, Standard for a Smart Transducer Interface for Sensors and Actuators– Wireless Communication and Transducer Electronic Data Sheet (TEDS) Formats, IEEE Instrumentation and Measurement Society, TC-9, The Institute of Electrical and Electronics Engineers, Inc., New York, N.Y. 10016.

PAGE
1

