
Managing Tcl’s Namespaces
Collaboratively

Don Libes
National Institute of Standards and Technology

Gaithersburg, MD 20899
libes@nist.gov

Abstract

The NIST Identifier Collaboration Service (NICS) is a
proposed service to encourage collaboration among
researchers and developers when choosing identifiers,
far in advance of when it might ordinarily occur. This
would support and enhance standards development
activities, and development and communications in a
variety of fields from software development to system
administration. Implementation of this system would
provide immediate and significant time and cost-savings
to many technology administrators, researchers, devel-
opers, and implementors world-wide.

This paper describes the benefits of NICS to the Tcl
community. This paper also briefly describes the imple-
mentation of NICS which is Tcl-based internally.

Keywords: collaborative namespace management, data
element registry, NICS, Tcl

What’s an identifier – So what’s the prob-
lem?

An identifier identifies things. For example, in a pro-
gramming language, variables are identifiers. You dis-
tinguish one variable from another because they have
different names. In HTML, tags are identifiers. For
example, h1, h2, h3 and so on, are all identifiers. Sys-
tem calls, library names, port numbers are all identifiers.

So what’s the problem? The problem is that choosing
the right identifier is tricky. I don’t mean choosing from
among existing identifiers. That’s easy. Just read the
manual – or the standard. No, the hard part is coming
up with new identifiers. It sounds easy but it’s hard.

Tcl’s Namespace Disaster

Consider Tcl. Tcl provides no scoping of commands
[Ousterhout]. Thus, it is important to choose command
names which are unique. This is particularly problem-
atic when defining commands that are meant to work
with anyone else’s command extensions.

Tcl commands are generally short English words or
abbreviations. Despite the availability of namespace
management extensions such as incr Tcl, command
name collisions are common [McLennan]. Ad hoc solu-
tions such as prefixing all commands with a string
unique to the extension reduce the problem but do not
solve it.

People may suggest that the promised namespace sup-
port may rid Tcl of collisions but this isn’t quite what
will happen. In fact, the namespaces themselves will
then need to be managed. This situation of a shared
namespace is not unique to Tcl but is common to any
rapidly evolving system undergoing development by
parties that have no direct means of or desire to collabo-
rate frequently.

NICS provides a general-purpose registry for identifiers.
It is designed specifically to be adaptable to different
domains. By registering command names and prefixes
with this service, it is possible to avoid the types of con-
flicts mentioned earlier. The remainder of the paper will
describe NICS and how it can benefit Tcl with a very
low cost to the Tcl development community. Keep in
mind that Tcl is only one such application for NICS.

More about NICS

NICS is a web-based collaboration service specifically
for identifiers. It provides features that have come to be
expected for any web service: world-wide availability
and instantaneous access. The service is accessible to
the public, yet all information is authenticated – all
information is browseable, but all additions or modifica-
tions require authentication appropriate for the informa-
tion. Registration and authentication are totally
automated and immediate – from initial contact to full
use. All use is free.

NICS is not merely an online registry. Rather, NICS has
appropriate and innovative support specifically for iden-
tifier collaboration.

• Users may register identifiers well before their
use, thereby allowing very early declarations of
intent and feedback on ideas, even before ini-
tial prototypes or draft standards.

• Identifier descriptions must include their status
with respect to use and standards. Placeholders
identifiers, deprecated identifiers, and other
non-official or de facto identifiers are encour-
aged if they clarify knowledge needed by other
users.

• Users may register classes of identifiers.
• Users may temporarily register multiple identi-

fiers for the same purpose. For example, inter-

nal disputes within standards teams on
identifiers should not prevent dissemination
and public comment on the possible choices
being considered.

• Users may privately or publicly comment on
other identifiers. For example, users can sug-
gest better choices or identify potential con-
flicts. Public comments avoid other multiple
users redundantly contacting the original user.

• Information is available instantaneously. There
is no delay between the time identifiers and
comments are added and when they can be read
by other users.

• Identifiers are allowed to conflict. Temporary
disagreements show where attention of
research should be focused. It is also possible
that conflicting identifiers may merely reflect
the real world.

• If requested, conflicts and comments are imme-
diately sent to the identifier owner so that they
can respond promptly.

Further application to Tcl

The obvious use of NICS for Tcl is to choosing com-
mand names. Extension writers could register their
extension’s command names. Then other extension
writers could avoid choosing names that are already in
use or are planned for the future. The alternative is to
install all other extensions (or read about them) and look
for conflicts. Obviously this is not feasible. And it is
impossible to learn about future intents this way. In
comparison, NICS is trivial to use.

The Tcl development team has preannounced support
for namespaces. Although the details are not yet avail-
able, it is likely that this work will directly address some
of the problems having to do with command name colli-
sions.

However even assuming the command name collision
problem disappeared, several other sources of collisions
would remain.

• Namespace names – Namespaces themselves
will of course have names. These names them-
selves can have collisions. Although this
should be much less of a problem than com-
mand names, it is still a problem since exten-
sion authors must often pick these names in
ignorance of other extensions.

• Package and App_Init names – Collisions
occur frequently in this domain. Not surpris-
ingly, many collisions occur because many

packages tackle the same area. For example,
the Tcl FAQ lists packages from six different
authors to generate random numbers, three
packages to handle the Berkeley DBlibrary and
five packages to support objects. There are lit-
erally hundreds of conflicts like this. And there
are also conflicts simply because of a poor
choice of names, such as names that are too
short to be unique or meaningful. In a descrip-
tion of packages, Ousterhout acknowledges the
problem and goes on to advise “Choose pre-
fixes that are relatively short (3 to 6 charac-
ters)” [Ousterhout]. It is not surprising that
people have sometimes reacted by going to the
other extreme – choosing lengthy (and some-
times equally unmeaningful) names in an
attempt to avoid collisions.

• TCL_XXX values – The completion codes
returned by Tcl commands share an unman-
aged namespace. There are five predefined
codes (TCL_OK, TCL_BREAK,
TCL_CONTINUE, etc.). Anything else is
application defined. There is no obvious way
for extensions to avoid collisions with one
another since these numbers are not easily
obtained or manipulated. In my own experi-
ence with Expect [Libes95], I took the defen-
sive strategy of using relatively large numbers,
far, far away from Tcl’s choices. This strategy
was weak but there does not appear to be any
better alternative.

This is an example of a namespace that could
in theory be managed automatically by Tcl.
It’s trickier than it first appears, since it must
account for completion codes explicitly speci-
fied in scripts or passed between interpreters in
different processes with potentially different
completion mappings. Until such a manager is
developed, NICS provides a simple solution for
avoiding collisions.

• Math function names – Tcl permits the aug-
mentation of function names for evaluation by
expr. Like command collisions, function
names that conflict simply replace earlier defi-
nitions.

• Library names – Everyone wants their library
name to be meaningful and short. But after
accounting for the “lib” prefix and versioned
shared library suffixes such as “5.20.so”, that
leaves only four characters for portability to
file systems with 14 character filenames, mak-

ing the universe of library names small
indeed. But even without these restrictions,
most people choose short library names of no
more than 6 or 7 characters.

Some of these examples are only part of a much larger
problem. For instance, management of Tcl library
names is just a subset of library names in general. Con-
sider the system administrator faced with installing soft-
ware “off the net”. The administrator follows all the
directions – configuring, compiling, installing – only to
be hit at runtime with “ld.so: fatal: can’t open file
libQtvso.4, errno = 2” or something similar. At this
point, a search of the Web reveals three different Qtv
libraries!

Program function may require dealing with yet more
collisions, apart from those intrinsic to Tcl. For exam-
ple, programmers must choose port numbers statically
and with trepidation. It’s easy to tell what port numbers
are in use on a host currently. And of course, you
should avoid any ports listed in the IETF list of well-
known ports [Reynolds]. However, you cannot account
for future clashes. If someone else “claims” a port num-
ber and their program becomes “popular enough”, you
lose. Even if it doesn’t become popular, anyone
attempting to install both packages on their machine
faces conflicts.

Traditional approaches to public
namespace management

There are common ways of avoiding collisions in shared
namespaces:

• Managed database – The Perl Modules List is
an example of collision avoidance by explicit
human management [Bunce]. Hand-editted by
a person, the list maintains all the well-sup-
ported Perl modules and provides placeholders
for future module names. The advantages are
obvious. Yet there are several drawbacks to
this approach. The first is that it is expensive.
And if the labor is volunteered, then the data-
base becomes dependent on the good graces of
that person and whatever they are willing to do
and no more. Indeed, the Perl Modules List
maintainer specifically refuses to maintain
module location information, claiming under-
standably that it is too much work. Unfortu-
nately, this makes the Modules List frustrating
since a module can be listed at times and yet
not appear to exist on CPAN (the official Perl
archive) [CPAN].

• Published report or standard – I already men-
tioned the IETF publication and its draw-
backs. By comparison, most traditional
standards represent even less useful examples
of timely information. Part of the problem is
that any developing domain necessarily con-
sists of a standard half and a non-standard half.
It simply does not make sense to standardize
the half of a domain that is in development.
Yet practitioners in the field must be knowl-
edgeable of both halves.

Word of mouth, intuition, and dumb luck –
This is the time-honored traditional approach
to combining multiple Tcl extensions. Indeed,
it is prevalent in many other domains. For
example, linkers have no scoping mechanism.
When linking together multiple libraries of C
code, you have to cross your fingers and pray
that subroutine names from different authors
don’t collide. If you’ve been given a library
from a vendor without source, life can be very
unpleasant.

Choosing identifiers is inherently collaborative. The
whole point of using identifiers is so that everyone can
tell what we are all talking about. If we were just talk-
ing to ourselves, we wouldn’t need to identify our
things. Yet we have no tools to help in this collabora-
tion.

What NICS looks like in use

NICS is a typical web application in the sense that it is
CGI-based and uses HTML forms for interactive brows-
ing and input. A file upload facility is available for large
updates.

Initially the user selects a domain with which to browse.
In figure 1, the user is selecting the domain “Tcl com-
mands”. Also shown are some of the other domains
likely to be supported by NICS in the future.

Notice that domains do not have version numbers.
There is no reason to distinguish, for example, between
Tcl 7.4, 7.5, and 7.6 because it is possible to write
scripts portable to all of them. Or to put it another way,
if there are version-specific differences in the commands
such that they could still be accounted for in the current
Tcl, the differences should be documented among the
commands themselves. Even older versions might not
appear in NICS at all. For example, there is no value to
listing Tcl 6.0-specific information in its own domain
because no one is performing continued development of
it or writing extensions for it. Note that historic or dep-

recated commands can be listed (with such a proviso) if
there is some useful reason to do so. For example, if an
extension chose a name that was defunct but well-
known in an earlier release, it might be useful to point
this out.

Figure 2 shows a list of some of the identifiers in the
domain – in this case Tcl command names. This list
alone is useful for someone exploring the domain, per-
haps while designing an extension. They can see the
kinds of command names people choose, get a sense of
the style that is expected, and most significantly avoid
collisions with existing command names.

More information than just the name can be accessed by
selecting particular identifiers. Here, the command
name “close” has been selected – twice. Indeed, one
definition is from Tcl and one is from Expect.

Although NICS has tools to discourage collisions, they
are not prohibited. Collisions may come about because

of any number of reasons – competing proposals, squab-
bling, or just ignorance. But the reality is, collisions
exist in most domains undergoing rapid but decentral-
ized development. Therefore, practitioners in the
domain must be aware of these problems – or at least
have some easy way of finding out.

Figure 1: Browsing and selecting domains from the many that NICS manages.

Figure 2: Selecting two conflicting identifier names from the
domain of Tcl command names.

Figure 3 shows detail on the definition for close pro-
vided by Tcl itself. Several attributes allow relatively
arbitrary text such as the brief description and refer-
ences. Since the service runs on the web, it is conve-
nient to take advantage of hyperlinking. For example,
the reference section here links to a man page on close
that is provided courtesy of some other site. In fact, the
textual fields allow arbitrary HTML allowing the possi-
bility of .arbitrary formatting as well as the ability for
inline images. In other domains, for example, we have
made the descriptions appear to be directly from their
standard.

Usage and standard status are also encouraged. Some of
the choices for standard status include experimental, de
facto, international. It is also possible to indicate
“would be a mistake”. This is intended to indicate an
identifier that should not be standardized – perhaps
because it is a placeholder such as unsupported0. This
kind of identifier is more common than thought. Often,
people don’t give much thought to names or functions in
a rush to get things working. They may recognize the
limited future at the time but others may not and begin
embedding such poor names or designs in stone when
that was never their intent. Clearly, a name like
unsupported0 is an excellent way to indicate the intent
of the designer. However, few people are so bold and
careful.

NICS can be told to contact the identifier owner if a col-
lision occurs. This can encourage the two identifier
owners to choose different (i.e., better) identifiers – or
even better – to work together on the same one. At
worst, the two owners will at least be made aware of the
problem.

Owners may disable collision notification since such
notification is not always appropriate. For example, a
domain subset that has been standardized is not likely to
be in the position to change.

Anyone can browse this information. However, the
information is modifiable only by the identifier owner.
In the example shown here, the identifier is a team: the
Sun Labs Tcl/Tk Project. An owner may also be a per-
son or any logical entity – as long as it has an email
address. The authentication hinges on email reachabil-
ity [Libes96a]. This technique provides moderate secu-
rity (appropriate for NICS) with no administration cost
to NIST and no special software required by users. Fig-
ure 4 shows the owner for the close command.1

Figure 5 shows the beginning of the second definition of
close. It identifies itself as coming from the Expect
extension. The only notable difference is that it declares
an alias. Aliases are common in many domains. In the

1. Notice that the email authenticates who was actually
responsible for adding the information.

Figure 3: NICS shows the first close definition.

case of Expect, all commands are also aliased with an
exp_ prefix. Once informed of aliases, NICS allows
queries as if they were full-fledged identifiers them-

selves but also remembers that they are defined by other
identifiers.

At the end of this particular identifier instance is a com-
ment (figure 6). It has been placed by some other user

who has observed that Expect’s close appears to conflict
with Tcl’s.

Figure 4: NICS shows the owner of the first definition of the close
command.

Figure 5: Excerpt of an identifier showing a command name and
alias.

Figure 6: A public comment attached to an identifier.

Comments in practice tend to be more lengthy (and
heated). Comments might also include suggestions for
better names, references to both other extensions and
people, historical work, future plans, etc. Indeed, it is
not uncommon for some people to perform a surpris-
ingly large amount of research in attempting to phrase
the observation as carefully and intelligently as possible.

If comments were sent by private email, it is entirely
possible that many other people would make the same
observations leading to significant wasted effort.

Attaching comments to identifiers avoids this. The
identifier owner may respond to the comment privately
or publicly but may not delete it. Only the comment
owner may change or delete it.

Figure 7 shows a possible public response to the earlier
comment. This is the type of information that could
potentially stop many people from asking similar ques-
tions to the earlier one. The response appears after the
original comment and can only be changed by the iden-
tifier owner.

NICS performs notification of comments in a way simi-
lar to that of collisions. For example, identifier owners
are notified (if they so request) of comments or changes
to them.

Other Features

The web page interface shown here allows identifiers to
be added one at a time or en masse using a file upload
facility. It is relatively easy, for example to automate
population of the commands from an entire Tcl exten-
sion. For instance, the Expect commands were added
by means of a 35-line script.

NICS has a number of other features. As an example,
domains may be moderated meaning that the domain
owner has control over who can add or comment on
identifiers. However these other features are not partic-
ularly appropriate to the Tcl community and will not be
covered here.

Implementation Notes

The service is written entirely in Tcl. CGI support is
provided by the Tcl-based CGI library, cgi.tcl (also
entirely written in Tcl) [Libes96b]. Database service is

provided by Oracle using OraTcl [Poindexter]. The ser-
vice runs on a Sun Ultra with access to 55GB Raid stor-
age running Netscape server software. NIST has an
SMDS connection (34Mbps) to BBN Planet and a T3
connection (45Mbps) to MCI.1

With our current design, over the next three years, we
envision on the order of 100,000 registered users, 500
domains, with an average of 10,000 identifiers per
domain up to a peak of 1,000,000 identifiers for any one
domain. We do not anticipate network bandwidth or
space problems during this time. However, if demand
outstrips our ability to provide space at a reasonable
cost, we would look for and encourage other volunteers
institutions to take over specific large domains.

1. Names of companies and products are provided in
order to adequately specify procedures and equipment
used. In no case does such identification imply recom-
mendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the
products are necessarily the best available for the pur-
pose.

Figure 7: Owner’s response to a public comment.

Duration of the Service

Once development is complete, we envision the service
running in an essentially automated mode. Usage and
experience must be documented and additional disk
space may be required from time to time, but the day-to-
day operation will be totally automated. As long as the
service is of significant value (i.e., that we claim it will
be), we expect to be able to provide the service indefi-
nitely, as the actual expenses (electricity, floor space,
disk space, backups, maintenance) are a very small frac-
tion of that of the NIST Information Processing Support
Group.

Applying NICS More Generally

Choosing identifiers collaboratively enables easier and
faster development of standards and reuse of software.
Implementation of this system would provide immediate
and significant time and cost-savings to millions of soft-
ware and standards developers world-wide.

Industry needs the benefits of this service but no single
company wants to fund it – this project would benefit
many while only the original company pays for it. In
contrast, NIST, as a neutral site, is the ideal host for
NICS.

Unlike the traditional standards activities performed by
NIST, NICS is complementary. In particular, NIST per-
forms research for standards and participates in the cre-
ation of standards. More and more, standards are
growing increasingly complex. Many standards (STEP,
POSIX, etc.) are taking 5 or even 10 years to complete.
In part, this is because the technology and in some cases
even the standards themselves are being created by
many people without collaboration. Without giving up
competitive advantages, these people want to collabo-
rate yet they lack the mechanisms to do so in the area
that NICS addresses.

Test audiences have identified a large number of
domains to which NICS could be immediately applied.
We intended on populating NICS with information from
a number of these areas to catalyze usage. This is a time
consuming task for the very reason that NICS is so use-
ful – because this information is not easily accessible
from one place or organized in any uniform way.

In addition to the technical work, crucial non-implemen-
tation work is also required. Specifically, various poli-
cies must be defined and implemented, and NICS must
be thoroughly documented, both for immediate usability
and for credibility as a self-sustaining project. Except
for research issues, NICS is intended to run by itself as a

production service in outlying years. This requires a
significant amount of testing and focus on making sure
that it is robust.

Status

At the present time, NICS is running in a mode where it
is restricted to a small number of domains: the Tcl
domains and a few others. This represents an opportu-
nity for the Tcl community – both to manage their
namespaces using NICS, and to provide feedback to the
usefulness of the concept. We are very interested in
suggestions for improvements from the Tcl community
which we view as a prototypical audience for the benefit
of NICS.

With additional funding, we hope to open the service to
other domains in the near future as well as complete
other aspects of the service.

Conclusion

NICS is a proposed service to encourage collaboration
among researchers and developers when choosing iden-
tifiers, far in advance of when it might ordinarily occur.
We believe NICS would be of direct benefit to the Tcl
community in a variety of ways. While we expect that
the one example of command-name conflicts may be
addressed by advances in Tcl itself, other namespaces
will remain a problem that can be addressed by NICS.

Acknowledgments

Thanks to Mark Williamson, Tu Nguyen, and Jimmy
Graham of the NIST Information Processing Support
Group for providing web and Oracle service for NICS.
Dan Nickchen implemented the first release of the Ora-
cle integration from a prototype file-based version.

This project is financially supported in part by the NIST
Advanced Technology Program. Earlier funding was
received through a U.S. Department of Commerce Pio-
neer Grant and a grant from the NIST MEL Director’s
Reserve.

References

[Bunce] Bunce, Tim, and Konig, Andreas,
“The Perl 5 Module List”, http://
gd.tuwien.ac.at/languages/perl/
CPAN/modules/00modlist.long.html.

[CPAN] “CPAN – Comprehensive Perl
Archive Network”, http://
www.perl.com/cpan.

[Reynolds] J. Reynolds, J. Postel, “Assigned
Numbers”, RFC 1700, USC – ISI,
October 1994.

[Libes95] Libes, Don, “Exploring Expect: A
Tcl-Based Toolkit for Automating
Interactive Programs”, O’Reilly and
Associates, January 1995.

[Libes96a] Libes, D., “Authentication by Email
Reception”, Proceedings of the Fifth
System Administration, Networking,
and Security Conference (SANS 96),
Washington, DC, May 12-18, 1996.

[Libes96b] Libes, D., “Writing CGI Scripts in
Tcl”, Proceedings of the Fourth
Annual Tcl/Tk Workshop ‘96,
Monterey, CA, July 10-13, 1996.

[McLennan] McLennan, Michael, “[incr tcl] –
Object-Oriented Programming in Tcl,
Proceedings of the 1993 Tcl/Tk
Workshop, Berkeley, CA, June 10-11,
1993.

[Ousterhout] Ousterhout, John. K., “Tcl and the Tk
Toolkit”, Addison-Wesley, 1994.

[Poindexter] Poindexter, Tom, “OraTcl”, Tcl/Tk
Extensions, ed., Mark Harrison,
O’Reilly & Associates, Inc., to
appear.

