

Testing Requirements to Manage Data Exchange Specifications in Enterprise Integration – A
Schema Design Quality Focus

Boonserm (Serm) KULVATUNYOU, Nenad IVEZIC, and Buhwan JEONG

Manufacturing Systems Integration Division, National Institute of Standards & Technology
Gaithersburg, MD 20899-8260, U.S.A.

Abstract
In this paper, we describe the requirements to test W3C XML
Schema usage when defining message schemas for data
exchange in any large and evolving enterprise integration
project. We then decompose the XML Schema testing into four
(4) aspects including the message schema conformance to the
XML Schema specification grammar, the message schema
conformance to the XML Schema specification semantics, the
message schema conformance to design quality testing, and
canonical semantics testing of the message schema. We
describe these four testing aspects in some detail and point to
other related efforts. We further focus to provide some technical
details for the message schema design quality testing. As a
future work, we describe the requirements for canonical
semantics testing and potential solution approaches. Finally, we
describe an implementation architecture for the message schema
design quality testing.

Keywords: Enterprise Integration, XML Schema Design, Meta-
data Management

1. Overview
Large enterprise integration projects are typically evolving and
distributed in nature as they involve tens or even hundreds of
various applications that, in turn, may translate into thousands
of application-to-application connections.

These integration projects are evolving because it is impossible
(1) to obtain sufficient resources to complete the project in one
budget cycle, (2) to identify all the integration needs at the
beginning of the project and (3) to complete the entire project in
a short period from the management perspective. These projects
are also distributed because (1) software applications are
distributed geographically across the enterprise and (2) domain
experts and implementation teams are distributed
geographically also.

Such evolving and distributed characteristics of any large
integration project cause potential long-term interoperability
problems within the project if it is not managed appropriately.
The interoperability problems can delay the project completion
and significantly increase the project costs [9]. Such project
characteristics further necessitate that any large integration
project should include a coordination authority responsible for
ensuring consistency among integration subgroups. Such a
coordination authority may need to keep oversight over
integration architecture, integration technologies, workflow
processes, and data exchange specifications (including
information models). This paper focuses on the data exchange

consistency, which often takes the most time and cost in
integration project [8].

Traditionally, the data exchange consistency is achieved via
long discussions and meetings among domain experts. However,
participants within a coordination authority team may or may
not be domain experts. In addition, the team typically does not
have the necessary capability as well as capacity to oversee all
the application areas. More importantly, the integration
subprojects involve several heterogeneous domains. The
domain experts in the coordination authority team lose their
time when the team reviews subprojects that are irrelevant to
their expertise. The traditional approach alone that resolves the
inconsistency by gathering all experts results in significant
waste; hence, innovative measures and tools are necessary to
assist the coordination authority team. In this paper, we propose
some tools to help reduce the time, cost, and loss, while
maximizing consistency and interoperability during the
integration project life cycle.

2. Components in Data Exchange
Specifications Consistency

At present, W3C XML Schema is widely used for integration
projects as a canonical representation for data exchange
specifications. Therefore, our work is centered on the XML
Schema usage to define message schemas for data exchange.
The consistency of data exchange specifications may be
effectively supported by implementing four types of testing of
XML Schema usage in message schema definitions:

• The message schema conformance to the XML
Schema specification grammar;

• The message schema conformance to the XML
Schema specification semantics;

• The message schema conformance to design quality
testing; and

• The canonical semantics testing of the message
schema

For brevity, we refer to these four categories as schema
grammar, schema semantics, schema design quality, and content
semantics conformance category. Each of the conformance
categories may be viewed as a separate test suite and is
described in subsequent subsections.

Schema Grammar Conformance
The schema grammar conformance means that the message
schemas developed by any integration subgroup must conform
to the World Wide Web Consortium (W3C) XML schema

specification. The conformance of this type can be performed
by executing an ‘XML validating parser’ against the published
W3C XML Schema specification (http://www.w3.org/
2001/XMLSchema.xsd) such as Xerces (http://xml.apache.org/
xerces2-j/index.html) and MSXML (http://msdn.microsoft.com/
library/default.asp?url=/downloads/list/xmlgeneral.asp).
Alternatively, the W3C online XML schema validator is also
available at http://apps.gotdotnet.com/xmltools/xsdvalidator/.
The National Institute of Standards and Technology (NIST) also
offers a set of test suites for conformance testing of XML
validating parsers to help select a parser of choice
(http://xw2k.sdct.itl.nist.gov/brady/xml/generate.asp?tech=XM
L_Schema).

An XML message schema conforming to the schema grammar
only ensures that the data structure definitions defined in the
schema are computer interpretable. In effect, the message
schema can be used to validate an XML instance document (an
actual message) whether its content conforms to the intended
data structures. However, this conformance type does not ensure
that the data structure definitions are logically consistent and
unambiguous.

Schema Semantics Conformance
The schema semantics conformance means that the candidate
XML schema defines a semantically valid model with respect to

the standard W3C XML Schema semantics. In other words, we
must ensure that the candidate XML schema does not define a
conflicting relationship (see Figure 1) or an ambiguous
information model (see Figure 2). For this conformance
category, the IBM Schema Quality Checker
(http://www.alphaworks.ibm.com/tech/xmlsqc) offers the
testing functionality.

Figure 1 shows a conflicting relationship between SSN and
EmployeeId. First, the SSN type is defined as a 9-digit
numerical string. The EmployeeId is the employee’s SSN
appended with a four-digit suffix. This is a grammatically valid
XML schema, but one cannot create any valid EmployeeId
element. This is because a string cannot be valid for both
restrictions. The semantics associated with the restrictions on
different facets are treated as conjunction. Consequently, the
EmployeeId must be valid for both facets.

Figure 2 shows an ambiguous information model. The SSN type
is defined the same way as in Figure 1. For the same reason as
above, the schema designer defines the EmployeeId type
based on the SSN type. However, she uses a pattern facet to
restrict its value to be a 13 digits numerical string. This schema
is also grammatically valid; however, the result is that both 9
and 13 digits numerical strings are valid EmployeeId’s. That
is because these same facets are interpreted as alternatives
(disjunction).

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:simpleType name="EmployeeId">
 <xs:restriction base="SSN">
 <xs:length value="13"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="SSN">
 <xs:restriction base="xs:string">
 <xs:pattern value="[0-9]{9}"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="EmployeeId" type="EmployeeId"/>
</xs:schema>

Figure 1: A Conflicting Schema Example.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:simpleType name="EmployeeId">
 <xs:restriction base="SSN">
 <xs:pattern value="[0-9]{13}"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="SSN">
 <xs:restriction base="xs:string">
 <xs:pattern value="[0-9]{9}"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="EmployeeId" type="EmployeeId"/>
</xs:schema>

Figure 2: An Ambiguous Schema Example.

Schema Design Quality
The schema design quality conformance means that the
designed schema complies with some sets of best practices and
organizational specific requirements. The best practice rules
may be drawn from experienced system integrators and/or XML
architects. Tests within this category seek to enhance the
usability/re-usability and interoperability support of the schema
such as the schema’s ability to capture and enforce desired
semantics, extensibility, ease of maintenance, and
implementation and processing efficiency.

A tool to test for conformance to such requirements must
capture design rules and expertise in an executable knowledge
base. Some design rules are generic, others are organizational
specific or architecturally dependent. We have developed a
framework that allows such knowledge to be identified,
collected, and used for analysis of schema design quality. We
describe this framework in Section 3.

Content Semantics Conformance
The content semantics conformance means that a canonical
semantic model of data exchange specifications is maintained
and used across the enterprise. Tools to verify this conformance
must deal with an evolving semantic model. They must be able
to identify semantic overlaps and duplicates between a newly
created message schema and the base set of message schemas
(served as the canonical semantic model). When an overlap or a
duplicate is identified, the tools must compute a similarity
measure and suggest a strategy for reconciliation. Once the new
schema is verified, it can be included as part of the base
schemas. As the number of schemas grows, the time and effort
requiring the coordination authority team to ensure the
canonical semantic model grow. Such tools would make this
recursive task more efficient.

Creating tools for this conformance category is a difficult
problem but research results have shown promising approaches.
Stuckenschmidt and Visser ([15] described three possible
similarity measures of various complexity and robustness
including one based on the Rough set theory [12], another using
the Bayesian theorem [2], and the other based on the Fuzzy set
theory [19]. Peng et al. [13] also detailed a Bayesian approach
to measure the semantic similarity. Ambite and Knoblock [1]
introduced an approach to reconcile schemas to accommodate
discrepancies between a document instance and its schema.

These approaches should not be viewed as competing but as
complementary at this early stage of content semantics testing
development. While traditional applications of these approaches
are in the search algorithms and database integration areas, our
research objective is to bring these approaches together and
fine-tune them to yield maximum benefits to the large and
evolving enterprise integration project.

3. Schema Design Quality Testing
Approach

The knowledge about the schema design quality is typically
obtained from an XML designer expert knowledge or from
organizational conventions (some of which may be adopted
from standard conventions). The list below describes some
design quality knowledge collected within our initial research
project.

• Test for non-determinism [11]. This includes data
structures that fall into “type by attribute” category,
meaning that type is hidden in the attribute. As an example,
consider defining a Party element with a type or
qualifier attribute. Doing so unnecessarily limits the
extensibility of the expression because types are hidden.
Separate types should be defined with relationships – in
this case, we should define ShipToParty and
ShipFromParty as subtypes of Party. Then, one can
associate any unique property to the two subtypes. In
addition, in any place where only the ShipToParty type
is appropriate, it can be explicitly indicated in the model
and validated by a parser. This cannot be done with XML
Schema when the type is hidden in the attribute.

• Test for correct use of the upper camel case for long tag
names. Upper camel case tags should be parsed to spell-
check each sub-string to make sure it is a valid word or
abbreviation. An all upper case substring may be
recognized as a specific acronym and ignored, or checked
against a list of allowable acronyms. Long tag names have
become a convention because of increased computing
power. The upper camel case convention is also adopted as
a standard for such purpose (ISO 11179 [5] provides a
guideline for the upper camel case convention). This test
ensures common usage of the upper camel case across an
organization and facilitates content-semantics testing as
well.

• Test for extensibility and reusability of the schema. This
test can be done by, for example, praising the use of global
types and warning against the use of anonymous types
whose content model is locally defined within an element.
Globally defined types allow reuse while the anonymous
types do not. In addition, anonymous types make it harder
to identify similarity.

• Test for the use of weak typing [11]. Contents within
complex structured elements that are typed as an XML
Schema primitive Data Type are regarded as weak typing.
Weak typing provides little value and semantics to
validation and application processing. In addition, it
decreases the schema extensibility and lowers the
efficiency of content semantics testing.

• Test for compliance with other design principles.
Although the XML schema standard provides a large
number of features to specify information structure and
semantics, some features are not appropriate for integration
projects. In addition, some of them must be used with
caution. Two of these concerns are described below.

• Ease of maintenance. For example, the derivation
based on restriction is not recommended because it is
prone to the kinds of inconsistency shown in Figure 1
and Figure 2. Furthermore, the restriction of complex
types has to restate all the contents of the base type
(so called feature regression); hence, changes in the
base type require update to all derived types.

• Schema clarity. The schema clarity makes the schema
easier to understand and implement. For example, use
of default namespace for an imported schema is not
recommended and all elements and types should have
associated namespaces. One consequence of this is
that a schema should not be defined with 'no target
namespace'.

• Test the schema for its ability to facilitate the use of an
existing standard in the instance. This test may be done
through cross-referencing concepts that refer to existing
content standards. Such concepts should be structured so
that their attributes allow specification of meta-data
(pointing to associated standards) and/or they should be
typed based on enumerations.

• Test for organizational specific requirements. Some of
the issues that may be tested in this sub-category include
specific target namespaces, namespace abbreviations, and
consistent use of qualified or non-qualified elements and
attribute forms.

These are small examples of design principles that may be
encoded as executable test rules within the schema design
quality conformance category. In an on-going project, we
research and document extensively best practices from a
number of XML design guidance documents such as the Air
Force Global Combat and Support System XML Guideline
document [4], ASC X12 Reference Model for XML Design [16],
Korean Institute for Electronic Commerce XML Guideline [7],
and more. This knowledge must be captured in a computer
interpretable format so that it can be used by the coordination
authority team. Sometimes the knowledge can be encoded as a
set of rules; other times it requires sophisticated routines to
capture heuristics and to connect to other knowledge sources.
Finally, since knowledge can evolve, each test should be a
completely self-contained executable module.

4. Implementation of Schema Design
Quality Testing

The schema design quality module will be built within the B2B
Testbed context [10], which is designed to be a neutral and
persistent environment that provides reusability, accumulation
of organizational knowledge and lessons learned, coordination,
and cost sharing among industrial participants. Since some test
cases can be organizational specific, the test tool will be
designed as a knowledge repository. Each user can create a
profile and add test cases incrementally to the profile. The tool
will be a web-based client/server application where execution
occurs on the server side; hence, technologies used to encode
and execute the knowledge will be transparent to the user.
However, in order to keep the knowledge open, the knowledge
representation will be declarative. For that reason, simple
knowledge will be encoded using W3C XPATH/XSLT
expression [17] [18] using the Schematron schema [14] and the
complex knowledge will be encoded using rule-based languages
such as the Java-based Expert System Shell script [6]. The
expert system shell script, which runs as a server side
application, allows the server to connect to multiple knowledge
sources. In the long term, our goal is for the users to be able to
submit additional knowledge and conformance rules. Figure 3
shows the implementation architecture.

Legend

Client
Browser

Application/Servlet Server

Expert System
Shell (ESS)

XSLT
Transformation
Engine

ESS Scripts

Schematron Rules

Knowledge Base

Users

Test Profiles

Profile Database

Create/Update Profiles

Execute Test

Test Result

Retrieve Response

Interaction

Reference

Figure 3: An Implementation Architecture for Schema Design Quality Testing.

<pattern name="Use of anonymous type.">
 <rule context="xs:element">
 <report test="xs:complexType">Use of anonymous type is not recommended for extensibility reason. It is
recommended that global type be defined and the element is declared based on that global type.
 </report>
 <report test="xs:simpleType">Use of anonymous type is not recommended for extensibility reason. It is
recommended that global type be defined and the element is declared based on that global type.
 </report>
 </rule>
</pattern>

Figure 4: A Schematron Snippet Detecting the Use of Anonymous Type.

As an example, we show a snippet of Schematron code
capturing the rule for detecting the use of anonymous type in
Figure 4. The snippet looks for a pattern, in which the
xs:complexType or xs:simpleType appears as a child
of the xs:element, an XML schema. If such pattern is found,
it prints out the corresponding warning messages to the user.
Snippets like this is declarative and a self-contained knowledge
module. It can be stored and executed independently in the
knowledge base.

5. Conclusion
The paper presented a framework for managing an evolving
integration project, which utilizes XML as an integration
medium. As the project evolves so do the message schemas
used for enterprise integration and using this proposed
framework to help carefully manage the evolution of schemas
allows software components built on those schemas to be
reusable. This eliminates the need for and cost of point-to-point
integrations. In addition, the framework helps ensure that
integration subprojects adhere to the same structure and
representation when they overlap in functionalities and
semantics. These enhancements provided by the proposed
framework collectively may significantly promote
interoperability among applications. Moreover, the framework
is not only applicable to the integration projects within an
enterprise, but also to the integration projects within a supply
chain where data exchange specifications also evolve. Likewise,
international standards such as the ebXML Core Components
[3], which envision growing repository of semantics, could use
this framework to maintain a canonical and interoperable
semantic model.

6. Disclaimer
Certain commercial software products are identified in this
paper. These products were used only for demonstrations
purposes. This use does not imply approval or endorsement by
NIST, nor does it imply that these products are necessarily the
best available for the purpose.

7. References
[1] Ambite, J.L. and Knoblock, C.A., “Reconciling distributed
information sources”, In Working Notes of the AAAI Spring
Symposium on Information Gathering in Distributed
Heterogeneous Environments, Palo Alto, CA, 1995.

[2] Bayes, T., An essay towards solving a problem in the
doctrine of chance. Phil. Trans. Reproduced in: W.E. Deming
and Haner (eds.) New York, 1963.

[3] DISA UN/CEFACT, EbXML Core Component
Specification version 1.9, Available online via <
http://webster.disa.org/cefact-
groups/tmg/downloads/CCWG/for_review/CCTS_V_1pt90.zip
> (accessed December 2002).

[4] Destefani, C., “Global Combat Support System - Air Force
BOD Development Process”. Open Application Group
Meeting, New Orleans, LA, Available online via <
http://openapplications.org/downloads/meetings/200210%20Ne
wOrleans/02-October New-Orleans.zip> (accessed October
2002).

[5] International Organization for Standardization. ISO/IEC
11179-1 Specification and standardization of data element –
Part 1: Framework, 1999.

[6] Friedman-Hill, E., Jess the Rule Engine for the JavaTM
Platform Version 6.0a8. Internet web site, Available online via
<http://herzberg.ca.sandia.gov/jess/> (accessed July 2002).

[7] Korean Institute for Electronic Commerce. Guidelines for
Development of XML Electronic Messages in Korea,
Available online via <www.xeni.co.kr/support/
KIECGuidelineFinal_english_.pdf> (accessed March 2003).

[8] Linthicum, D.S., Enterprise Application Integration,
Pearson Education, 1999.

[9] National Institute of Standards and Technology,
Interoperability Cost Analysis in the Automotive Supply
Chain, Available online via <http://www.mel.nist.gov/
msid/sima/interop_costs.pdf> (accessed March 1999).

[10] National Institute of Standards and Technology, The B2B
Interoperability Testbed, Available online via
<http://www.mel.nist.gov/msid/oagnisttestbed/> (accessed
January 2004).

[11] Rowell, M. and Feblowitz, M., OAGIS 8.0 Design
Document, Open Application Groups, 2002.

[12] Pawlak, J., “Rough Sets”, International Journal of
Information and Computers, 11, pp.341-356, 1982.

[13] Peng, Y., Zou, Y., Luan, X., Ivezic, N., Gruninger, M., and
Jones, A., “Towards semantic-based integration for e-business”,
International Symposium on manufacturing and
Applications, Orlando, FL, June 2002.

[14] Jelliffe, R., The Schematron Assertion Language 1.5,
Academia Sinica Computing Center. Aavailable online via
<http://www.ascc.net/xml/resource/schematron/Schematron200
0.html> (accessed August 2003).

[15] Stuckenschmidt, H. and Visser, U., “Semantic translation
based on approximate re-classification”. Proceedings of the
Workshop "Semantic Approximation, Granularity and
Vagueness, KR'00, 2000.

 [16] World Wide Web Consortium, XML PATH Language
Version 1.0, Available online via
<http://www.w3.org/TR/xpath> (accessed November 1999).

[17] World Wide Web Consortium, XSL Transformations
(XSLT) Version 1.0, Available online via
<http://www.w3.org/TR/xslt> (accessed November 1999).

[18] Zadeh, L., “Fuzzy sets”. Information and Control, pp.338
– 353, 1965.

