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ABSTRACT

Modeling uncertainty in machining, caused by modeling inaccuracy, noise and pro-
cess time-variability due to tool wear, hinders application of traditional optimization to
minimize cost or production time. Process time-variability can be overcome by adaptive
control optimization (ACO) to improve machine settings in reference to process feedback
so as to satisfy constraints associated with part quality and machine capability. However,
ACO systems rely on process models to de�ne the optimal conditions, so they are still
a�ected by modeling inaccuracy and noise. This paper presents the method of Recursive
Constraint Bounding (RCB2) which is designed to cope with modeling uncertainty as well
as process time-variability. RCB2 uses a model, similar to other ACO methods. However,
it considers con�dence levels and noise bu�ers to account for degrees of inaccuracy and
randomness associated with each modeled constraint. RCB2 assesses optimality by mea-
suring the slack in individual constraints after each part is completed (cycle), and then
rede�nes the constraints to yield more aggressive machine settings for the next cycle. The
application of RCB2 is demonstrated here in reducing cycle-time for internal cylindrical
plunge grinding.
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1 INTRODUCTION

The advent of computer numerical control has enabled adaptation of machine settings
for enhanced productivity. An important requirement when adapting machine settings
is that the measurements of process and part quality remain within their speci�ed lim-
its so that part integrity is ensured. One adaptation approach in machining is Adap-
tive Control with Constraints (ACC), which regulates power or cutting force at a spec-
i�ed level (Daneshmend and Pak, 1986; Lauderbaugh and Ulsoy, 1988; Masory and Ko-
ren, 1985; Tomizuka and Zhang, 1988). Although ACC can avoid interruptions in the cut
due to tool breakages in machining, or safeguard against thermal damage (burn) to the
workpiece in grinding, it is not explicitly designed to improve process e�ciency in terms
of production cost or time.

The adaptation approach which explicitly addresses process e�ciency is referred to
as Adaptive Control Optimization (ACO) (Koren, 1983). In ACO, the machine settings
are adapted so as to minimize production cost or cycle time in response to part and/or
process feedback. This interactive approach to process optimization is adopted to enable
the ACO systems to maintain constraint satisfaction despite modeling uncertainty, which
is the primary factor hindering optimization of machining processes. Modeling uncertainty
in machining arises from: (1) the diversity of machining conditions due to variations in
material properties, tool/wheel type, and lubrication, (2) the stochastic nature of these
processes caused by material inhomogeneity, workpiece misalignment, and measurement
noise, and (3) process time-variability due to tool wear.

The �rst attempt at ACO was the Bendix System (Centner, 1964), where the machin-
ing removal rate was continually maximized through changes in the feedrate and spindle
speed in response to feedback measurements of cutting torque, tool temperature, and
machine vibration. However, the Bendix System was limited in applicability due to the
need to estimate tool wear based on an accurate model. A subsequent advancement in
ACO was the Optimal Locus Approach (Amitay et al., 1981; Koren, 1989), which made
it possible to forego estimation of tool wear. In this approach, the locus of the optimal
points associated with various levels of tool wear is computed, and the optimal point
is sought where process and part quality constraints become tight. The Optimal Locus
Approach can avoid estimation of tool wear by using the tightness of constraints as the
measure for optimality. However, it still needs to rely on the accuracy of the process
model for computing the optimal locus and determining a priori which constraints are
tight at the optimum. Since the success of this approach depends on the premise that
modeling uncertainty will have negligible e�ect on the accuracy of the optimal locus, it
will produce sub-optimal results when this premise is invalid.

An ACO method which has been recently developed to overcome the di�culties
posed by modeling uncertainty is Recursive Constraint Bounding (RCB2) (Ivester and
Danai, 1995). Like the Optimal Locus Approach, RCB2 assesses optimality from the
tightness in the constraints using measurements of process and part quality after each
workpiece has been �nished (cycle). It also uses the model of the process to �nd the
optimal point. However, unlike the Optimal Locus Approach, RCB2 assumes the model
to be uncertain when determining which constraints are to be tight at the optimum and

1



selecting the machine settings for each process cycle. It obtains the machine settings by
solving a customized nonlinear programming (NLP) problem, and allows for uncertainty
by incorporating conservatism into the NLP problem.

Under deterministic conditions (no modeling uncertainty), the NLP problem would
yield the optimal machine settings for the process. In practice, however, the optimal point
of the model would di�er from that of the process, due to inherent modeling inaccuracies
and randomness associated with constraints. As such, there is a strong possibility that
the optimal point of the model will violate the process and part quality constraints. In
order to avoid constraint violation, a recursive approach to constraint tightening (bound-
ing) is adopted in RCB2, where the distance from the constraint measurements of the
cycle just completed to the absolute limit of the constraint is de�ned as the slack in each
constraint. The NLP problem is then formulated so as to minimize the objective function
(usually cycle-time or cost) while removing a portion of these slacks, thus yielding more
aggressive machine settings for the next cycle. In RCB2, the slack portions removed for
each cycle are de�ned in terms of the con�dence levels and noise bu�ers which account
for the inaccuracy and randomness, respectively, of individual modeled constraints. The
consideration of separate con�dence levels and noise bu�ers for individual constraints in
RCB2 enables the convergence of individual constraints to be tailored according to the
severity of modeling uncertainty associated with each constraint. The repeated minimiza-
tion of the objective function with progressively smaller slacks leads to bound constraints
and optimal machine settings. In this paper, the performance of RCB2 is studied in sim-
ulation and its e�ectiveness is demonstrated in cycle-time reduction of cylindrical plunge
grinding.

2 RCB2 METHOD

Optimization of a machining process can be considered as a constrained nonlinear pro-
gramming (NLP) problem where the machine settings correspond to the control vari-
ables, and the process and part quality measurements to the constraints. In general, a
constrained NLP problem is de�ned as (Luenberger, 1989):

minimize : f(x) (1)

subject to : g(x) � 0 (2)

h(x) = 0 (3)

xLB � x � xUB (4)

where f(x) represents the objective function, x = [x1; � � � ; xn]
T denotes the vector of

machine settings, g(x) = [g1(x); � � � ; gm(x)]
T and h(x) = [h1(x); � � � ; hp(x)]

T constitute
the vectors of inequality and equality constraints, respectively, and xLB and xUB represent
the lower and upper bounds of the machine settings, respectively. For machining processes,
the objective function f(x) usually represents cycle-time or cost, and the constraints are
associated with part quality and/or machine limitations.
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2.1 Methodology

RCB2 relies on the premise that analytical models of machining processes are of the cor-
rect form, although they may be imprecise. As such, RCB2 is designed to take advantage
of the form of the relationships provided by these models, but compensates for their in-
accuracies using measurements of process behavior and part quality as feedback. The
basic role of RCB2 is to assess the optimality of the process after each cycle from the
measurements of process and part quality as the basis for changing the machine settings
for the next cycle (see Fig. 1). RCB2 obtains these machine settings by solving a NLP
problem that has been customized for each cycle. The customized NLP problems are
obtained by rede�ning the inequality constraints (Inequality (2)) as

ĝ(x(j)) � ĝ(x(j � 1))� c[g(x(j � 1)) + n] (5)

to lead to a more aggressive set of machine settings when used as the basis of nonlinear
optimization. Inequality (5) rede�nes the upper limit of the inequality constraints for the
next cycle ĝ(x(j)) in terms of the modeled constraint values ĝ(x(j � 1)) for the cycle
just completed, the measured constraint values g(x(j � 1)), the con�dence levels c and
the noise bu�ers n, representing the allowable changes for individual modeled constraints.
Assuming that the process is initiated with conservative machine settings that satisfy the
process and part quality constraints, the con�dence levels and noise bu�ers control how
much the nonlinear program should tighten the constraints from one iteration to the next.

Process
measurements

optimal
?

Current Machine Settings

no

yes

Update
Redefined
Constraints

NLP
New

Machine
Settings

Figure 1: Schematic of RCB2.

Constraint rede�nition in RCB2 is developed to account for the fact that the value of
constraints cannot be accurately determined from the model due to modeling inaccuracies
and process randomness (i.e., g(x) 6= ĝ(x)). Therefore, machine settings that would
minimize the objective function while satisfying ĝ(x) � 0 do not necessarily ensure g(x) �
0. In machining, it is generally possible to select conservative settings that satisfy the
constraints. After the process is initiated with such settings, RCB2 selects the machine
settings such that the objective function will be reduced without violating the constraints.
In order to ensure constraint satisfaction, the machine settings for the next cycle x(j) need
to be selected such that g(x(j)) � 0. However, the only information available to RCB2

is in the form of the model and constraint measurements from the cycle just completed.
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Therefore, the rede�ned constraints that replace Inequality (2) need to be formulated in
terms of ĝ(x(j)) as

ĝ(x(j)) � U (6)

The main contribution of RCB2 is its de�nition of this upper bound such that it is
robust to modeling inaccuracy and randomness in the constraint values. As was stated
earlier, RCB2 relies on the premise that the model of the process correctly represents its
form. Based on this premise, the assumption is made here that this model approximately
represents the changes in the constraints due to changes in the machine settings, as

g(x(j))� g(x(j � 1)) ' ĝ(x(j))� ĝ(x(j � 1)) (7)

Although modeling inaccuracy and randomness prevent RCB2 from directly using the
above equation for rede�ning the constraints, it provides the basis for relating g(x(j)) to
g(x(j � 1)), as well as to ĝ(x(j)) and ĝ(x(j � 1)) which are available to RCB2 from the
model.

In RCB2, allowance for randomness is provided by noise bu�ers, n = [n1; :::; nm], which
de�ne the width of the noise distributions of g(x). If adequate constraint measurements
are available, the noise bu�er ni can be obtained as

ni = kisi (8)

where si represents the standard deviation of the ith constraint measurements and ki
denotes a constant typically between 6 and 12. The noise bu�er ni can alternatively
be estimated based on experience if adequate constraint measurements are unavailable.
In order to explain how the noise bu�ers are utilized to establish upper bounds on the
constraints, let us consider a case where the machine settings for the next cycle are very
close to the settings for the cycle just completed, that is x(j) = x(j � 1) + � ' x(j � 1).
For this case, the upper bounds on the actual constraint values can be de�ned as

g(x(j � 1) + �)� g(x(j � 1)) � [ĝ(x(j � 1) + �)� ĝ(x(j � 1))] + n (9)

This inequality provides an upper bound on the change in the constraint measurements,
but it is limited to in�nitesimal changes in the machine settings. In cases where x(j) 6=
x(j� 1)+ �, modeling inaccuracy could result in changes in the constraint measurements
that are larger than [ĝ(x(j))� ĝ(x(j � 1))] + n: In order to extend Inequality (9) so that
larger changes in the machine settings can be accommodated, con�dence levels c 2 [0; 1]
are introduced on the right hand side of inequality (9) as

g(x(j))� g(x(j � 1)) �
1

c
[ĝ(x(j))� ĝ(x(j � 1))] + n (10)

to account for the inaccuracy of individual modeled constraints. With the inclusion of
the con�dence levels, the upper bounds established in terms of the modeled values of
constraints (right hand side of Inequality (10)) can be made su�ciently large so as to
account for modeling inaccuracy associated with individual constraints. Accordingly,
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smaller con�dence levels can be selected for constraints that are less accurately represented
by the model so that a larger upper bound will be placed on the changes in the constraints.

While Inequality (10) de�nes the upper bound on the actual constraint changes, it
does not provide the upper bound on ĝ(x(j)) (U in Inequality (6)) that is needed for the
reformulation of the NLP problem. In order to develop this upper bound, we note that
the absolute requirement in the NLP problem is g(x(j)) � 0. This is equivalent to

g(x(j))� g(x(j � 1)) � 0� g(x(j � 1)) (11)

which de�nes the absolute limit on changes in the actual constraints. Satisfaction of this
absolute limit in light of Inequality (10) is ensured when

1

c
[ĝ(x(j))� ĝ(x(j � 1))] + n � 0� g(x(j � 1)) (12)

which states that the upper bound for Inequality (10) must be less than or equal to
the upper bound for Inequality (11). Inequality (12) provides the basis for de�ning the
upper limit on ĝ(x(j)) (U in Inequality (6)) so that constraint satisfaction is guaranteed.
Rearranging inequality (12) yields

ĝ(x(j)) � ĝ(x(j � 1))� c[g(x(j � 1)) + n] (13)

which de�nes the upper bound for ĝ(x(j)) in terms of the modeled constraints and their
measured values from the cycle just completed. Inequality (13), which is identical to
Inequality (5), represents the rede�ned constraints to be used in the customized NLP
problem in place of Inequality (2). Note that under deterministic conditions (accurate
model, without noise), the modeled constraint values ĝ(x) and their measured values
g(x) would be identical, the con�dence levels would be assigned the value of 1 (accurate
model) and the noise bu�ers would have the value of 0 (noise-free conditions). Under
these conditions, the right hand side of Inequality (13) would be reduced to zero, and
Inequality (13) would be equivalent to Inequality (2).

The salient feature of RCB2 is its robustness to modeling inaccuracy and noise. The
conceptual basis of RCB2's design is illustrated in Fig. 2. The dark and light data
points in this �gure represent measured and modeled values of a constraint for successive
cycles, respectively, and the dotted arrows point to the upper limit of the constraint
in successively reformulated NLP problems. The top of the gray area represents the
allowable limit of a constraint, and the bottom of this area denotes the limit when noise
is taken into consideration. (Note that the width of the gray area is the value of the noise
bu�er.) When the distance from a particular measurement to its limit is less than its
noise bu�er (data point within the gray area) the constraint cannot be safely tightened.
In such cases, the value of ci[gi(x(j � 1) + ni] is set to zero (e.g., Cycle 6) signifying that
the modeled constraint value should not be changed. When the distance from a particular
measurement to its limit is greater than its noise bu�er (data point outside the gray area)
the constraint is tightened using Inequality (13). In such cases, the distance from each
constraint measurement (dark data point) to its upper limit represents the slack in the
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constraint (0�gi(x(j�1)) in Inequality (12)), and the dotted arrows represent the portion
of the slack (�ci[gi(x(j � 1)) + ni]) that RCB2 attempts to remove by reformulating the
NLP problem. If the con�dence level were assigned the value of 1 the actual constraint
may fall above the gray area and result in constraint violation. Assigning a value less
than one to the con�dence level provides a safety margin to improve the likelihood of
constraint satisfaction. This improvement, however, is provided at the cost of reducing
the rate of convergence to the optimum, as will be discussed later in the simulation study.
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Figure 2: Constraint tightening in RCB2.

As the NLP problem is repeatedly reformulated and solved, the machine settings
approach their optimal values and the process and part quality measurements approach
their respective limits. At the steady state, some slack may remain in the constraints
due to the conservative estimates of the noise bu�ers, n. After all of the constraint
measurements have converged within these conservative noise bu�ers, the process can be
repeated to obtain more constraint measurements for improving the estimates of the noise
bu�ers using Eq. (8). In cases where the new noise bu�er estimates are smaller than their
original values, the NLP problem can be reformulated with the new noise bu�ers so as to
further tighten the constraints and reduce the objective function.

2.2 Analysis in Simulation

The e�ectiveness of RCB2 is �rst illustrated in simulation for single-pass turning, where
two machine settings are adjusted so that the state-space can be depicted graphically.
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The cutting speed and feed were the machine settings for this problem, and power and
surface roughness the constrained variables. The constraint measurements were simulated
using a turning model (Ivester and Danai, 1995). In order to simulate noise, the values of
power and surface roughness obtained for each cycle were multiplied by random numbers
uniformly distributed between 0.9 and 1.1. Modeling inaccuracy was simulated by per-
turbing the coe�cients and exponents of the simulation model within ten percent of their
nominal values before each sequence of cycles. Only the nominal values of coe�cients and
exponents were used by RCB2.

The performance of RCB2 was examined under various conditions. The �rst study
was for a large depth of cut, where tool wear progressed so rapidly that it was necessary to
change the tool after each cycle. As such, the relationships between the machine settings
and constraints were not a�ected by accumulated tool wear. The �rst cycle of each test
was begun with conservative values for the machine settings, so that the constraints would
be satis�ed. Using simulated constraint values and con�dence levels of 0.5 for both the
power and surface roughness constraints, the rede�ned constraints for the subsequent
cycles were obtained by RCB2 using Inequality (13). These rede�ned constraints were
then used to determine the next set of machine settings using the Sequential Quadratic
Programming (SQP) algorithm (Powell, 1978). A series of machine settings selected by
RCB2 is shown in Fig. 3 within the state-space of this problem. The results indicate
that the machine settings move towards the optimal point from cycle to cycle without
violating the constraints despite the approximate model used by RCB2 and the presence
of noise in the simulated values of the constraint measurements.
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Figure 3: Gradual tightening of constraints in the turning problem.

Next, the e�ect of con�dence levels on the speed of convergence of RCB2 was studied.
For this, runs were performed with various con�dence levels for the power and surface
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roughness constraints. The cycle-times from three runs with con�dence levels 0.1, 0.5,
and 0.9 are shown in Fig. 4. The results indicate that although the convergence rate of
RCB2 was improved by increasing the magnitude of the con�dence levels, the di�erences
in cycles times were practically insigni�cant after the �rst few cycles. However, the rapid
convergence rate associated with higher con�dence levels is not obtained without a price,
since larger con�dence levels correspond to greater risks for constraint violation. One
case of constraint violation is shown in Fig. 5, where a con�dence level of 0.9 was selected
inappropriately given the degree of inaccuracy of the model.
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Figure 4: Reduction in cycle-time by RCB2 with di�erent con�dence levels.

Another important feature of RCB2 is its adaptability to changing process conditions
caused by progression of tool wear. In order to evaluate the performance of RCB2 in such
circumstances, a smaller depth-of-cut was used to eliminate the need for changing tools at
the beginning of each cycle. This made it necessary to cope with process time-variability
due to tool wear. The conditions for the �rst few cycles of this run are very similar to
those of the original run. However, as tool wear progresses the constraints become more
di�cult to satisfy (see Fig. 6). Therefore, in order to continue satisfying the constraints,
it becomes necessary to select more conservative machine settings which is re
ected in
larger values of cycle-times (see Fig. 7). After the cycle-time reaches a certain threshold,
it is more economical to change the tool than to continue with a worn tool.

3 EXPERIMENTAL VERIFICATION

The RCB2 method was validated experimentally for internal cylindrical plunge grinding.
In cylindrical grinding, material is removed from the internal cylindrical surface by feeding
a grinding wheel that is rotating at a high speed into the workpiece which rotates at a much
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Figure 5: Violation of constraints when con�dence levels are set too high.

lower speed (see Fig. 8). The infeed control cycle u = [u1; u2; u3] is typically characterized
by three successive stages as illustrated in Fig. 9: (1) roughing with a relatively fast infeed
velocity u1, (2) �nishing with a slower infeed velocity u2, and (3) spark-out at zero infeed
velocity (u3=0). This is followed by rapid retraction to disengage the wheel from the
workpiece.

In response to the controlled infeed, the radial size reduction of the workpiece follows
the actual infeed curve as shown in Fig. 9. The transient in the actual infeed at the
beginning of each stage is attributed mainly to the elastic de
ection of the system and to
the radial wear of the grinding wheel. This transient behavior can be approximated by a
�rst order system characterized by a time constant (Malkin and Koren, 1984).

The nonlinear programming problem for this grinding operation can be de�ned as (Xiao
et al., 1993)

Minimize cycle-time: T = t1 + t2 + t3 (14)

with respect to : u1; u2; t1; t2; t3; sd

subject to:

g1 = z1 � q2 � 0 (burning constraint) (15)

g2 = Rm � Rmax � 0 (surface �nish constraint) (16)

g3 = r � rmax � 0 (out-of-roundness constraint) (17)

h1 = u1t1 + u2t2 ��r = 0 (size constraint) (18)

The objective function for this problem is the total cycle-time T , which is de�ned as the
sum of the times for the three successive infeed stages, [t1; t2; t3]. The machine settings
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Figure 6: Distortion of the turning feasible space due to tool wear.

are the stage times [t1; t2; t3], the programmed infeed rates for the �rst two stages [u1; u2],
and the dressing lead sd. For these experiments, the wheel was dressed after each cycle
using a single point diamond dresser. The dressing lead sd, which speci�es the crossfeed
per revolution of the wheel, determines the initial sharpness of the wheel. Minimization
of the total cycle-time requires that tradeo�s among the three stage times be balanced
through an examination of their relationships with the various constraints using Eqs. (15)
- (18). The burning constraint in Eq. (15) requires that the thermally damaged (burned)
layer on the workpiece due to excessive grinding temperatures during the roughing stage
be completely removed during the subsequent �nishing stage. As such, a deeper layer
of thermally damaged material caused by a more aggressive roughing infeed rate can be
balanced by a longer time for the �nishing stage. An alternative to this burning constraint
is to completely avoid thermal damage during the roughing stage, which is more restrictive
but may be desirable for grinding of critical components (Xiao et al., 1993). The inequality
g2 de�nes the surface �nish constraint, where Rm denotes the measured surface roughness
and Rmax its maximum allowable value. The inequality g3 de�nes the out-of-roundness
constraint, where r represents the out-of-roundness value and rmax the maximum allowable
out-of-roundness. The equality h1 de�nes the size requirement, where �r denotes the
radial depth of material to be removed. The relationships among the constraints and
machine settings are given in (Xiao et al., 1993).

It has been suggested that the only in-process sensors which can be reliably utilized in
the harsh environment of grinding are a power monitor which measures the wheel spindle
power and a size gage which measures the workpiece diameter (Rao and Malkin, 1990).
The output from the power monitor together with a thermal analysis is used to estimate
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Figure 7: Increasing cycle-times due to tool wear.

the depth of the damaged (burned) layer z1 on the workpiece. The output from the
size gage, which directly indicates the remaining radial depth to be removed, is used to
estimate the elastic de
ection of the system and the radial wheel wear (or grinding ratio
G). The information derived from these two in-process sensors, together with post-process
measurement (inspection) of part quality (e.g., surface roughness and roundness), were
used to satisfy the constraints while reducing the cycle-time.

The internal cylindrical plunge grinding system is shown in Fig. 10. The system con-
sists of a Bryant Model 1116 internal grinder modi�ed by the addition of a stepper motor
infeed drive, an electrical workpiece drive for computer control in place of the original
hydraulic motor, a wheel spindle power monitor (A.F. Green TT2), a diametral size gage
(Marposs Micromar 5 and E9 ampli�er), a Taylor-Hobson Surtronic 3P surface roughness
gage, and a personal computer for data acquisition and control (Rao and Malkin, 1990).
Out-of-roundness measurements were not available, so values for the out-of-roundness
constraint were simulated based on the model equation. The arithmetic average surface
roughness constraint and out-of-roundness constraint were selected as 0.7�m and 0.6�m,
respectively. In these experiments, AISI52100 hardened steel bearing workpieces with an
internal diameter dw of 70mm and width b of 9mm were machined using a 32A80M6VBE
grinding wheel with an external diameter ds of 50mm. The peripheral speeds of the wheel
vs and the workpiece vw were 37m/s and 0.55 m/s, respectively.

Of the four constraint relationships (Eqs. (15) - (18)) considered in this problem, the
�rst three are inequalities, and the fourth is an equality. The �rst constraint, depth-
of-burn, is not readily measurable, so it was estimated based on the measured value of
power. Accordingly, the con�dence level and noise bu�er for the �rst constraint were set
at 1.0 and 0, respectively. The con�dence level and noise bu�er for the second constraint
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Figure 8: Diagram of an internal cylindrical plunge grinding operation.

(surface roughness) were set at 0.25 and 0.03, respectively. For the third constraint (out-
of-roundness), the con�dence level and noise bu�er were considered as 0.25 and 0.04. Since
the fourth constraint is an equality, no con�dence level or noise bu�er was associated with
it.

4 RESULTS

The initial machine settings for these experiments were selected as

[t1; t2; t3; u1; u2; sd] = [13:9; 6:7; 6:6; 16; 4; 110]:

with units as given in Table 1. The constraints were then evaluated according to the
measurements resulting from these settings as

[g1; g2; g3] = [�0:038; �0:06; �0:45]:
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Figure 9: Illustration of a grinding cycle consisting of roughing, �nishing and
spark-out stages.

The negative constraint values obtained for the �rst cycle indicate that the constraints
are not violated, and that they contain signi�cant slack which can be removed to lead to
reduced cycle-times. Using these machine settings in the constraint relationships yielded

[ĝ1; ĝ2; ĝ3] = [�0:038; �0:08; �0:31]:

The large negative value for the third constraint indicates that it can be tightened signif-
icantly, while the �rst two constraints have less slack.

For the second cycle, RCB2 calculated the limits of the rede�ned constraints based on
these constraint values (see Eq. (13)) which were then used to rede�ne the corresponding
constraints for the next cycle as:

ĝ1(x(2)) � ĝ1(x(1))� c1[g1(x(1) + n1] = �0:038 + 0:038

ĝ2(x(2)) � ĝ2(x(1))� c2[g2(x(1) + n2] = �0:08 + 0:0075

ĝ3(x(2)) � ĝ3(x(1)) + c3[g3(x(1) + n3] = �0:31 + 0:1025
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Figure 10: Implementation of RCB2 for cycle-time reduction of internal cylindrical
plunge grinding.

Using a nonlinear program (Sequential Quadratic Programming (SQP) (Powell, 1978)),
the machine settings for the second cycle were obtained as

[t1; t2; t3; u1; u2; sd] = [9:3; 4:1; 6:1; 25; 4; 72]:

which represented the optimal point for the rede�ned optimization problem, such that
[ĝ1; ĝ2; ĝ3] = [0; 0; 0]. However, when the experiment was run with the above machine
settings the constraint values were obtained as

[g1; g2; g3] = [�0:002; �0:03; �0:49]:

which were again less than zero, with considerable slack in the third constraint.
The above procedure was continued for three more cycles until the cycle-time was

approximately minimized. The machine settings and cycle-times for the �ve cycles are
listed in Table 1, with the corresponding measured constraint values listed in Table 2.
The cycle-times are plotted in Fig. 11, and the surface roughness and out-of-roundness
values are plotted in Fig. 12 against their allowable limits. The results in these �g-
ures indicate that the machine settings selected by RCB2 corresponded to progressively
tightened constraints (see Fig. 12). For the �fth cycle, both the surface roughness and
out-of-roundness constraints were within their respective noise bu�ers, so the cycle-time
could not be reduced further.

5 CONCLUSION

It has been demonstrated in this paper that RCB2 can be used to adjust the machine
settings from cycle to cycle in order to reduce cycle-time. For this, a model of the process
is required that adequately represents the general form of the relationships between the
machine inputs and part quality attributes. RCB2 is designed to cope with modeling

14



Cycle Stage Infeed Dressing Cycle
Iteration Times (sec) Rates (�m/s) Lead, Time,

Number t1 t2 t3 u1 u2 sd (�m) T (sec)

1 13.9 6.7 6.6 16 4 110 27.2

2 9.3 4.1 6.1 25 4 72 19.5

3 9.5 4.5 4.6 24 4 73 18.6

4 9.5 3.7 4.6 25 3.3 80 17.8

5 9.5 3.7 4.4 25 3.2 82 17.6

Table 1: Grinding machine settings and cycle-times obtained from RCB2.

Iteration Constraints gi
Number g1 g2 g3

1 -0.003 -0.06 -0.45

2 -0.002 -0.03 -0.49

3 -0.003 -0.11 -0.21

4 -0.001 -0.06 -0.23

5 -0.003 -0.03 -0.01

Table 2: Constraint values obtained after each grinding cycle.

uncertainty and process time-variability due to tool wear. It can be used either as a
selection guide to the machine operator, or as the basis of a supervisory module for
production control. Since RCB2 uses separate con�dence levels and noise bu�ers for each
constraint, incorporating additional machine inputs or constraints does not result in a
combinatorial increase in computation time or convergence iterations.
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Figure 11: Gradually reduced cycle-times by RCB2 for grinding.
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Figure 12: Tightened constraints by RCB2 for grinding.
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