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ABSTRACT

Good decision-making is founded on good information. Information technology
supporting product lifecycle management ought to provide a high degree of
information cohesion and traceability – knowledge of the interrelations among data,
and basis for belief. Providing cohesion and traceability is made difficult by
differences in viewpoint and ontology employed by the various disciplines and
organizations involved in the product lifecycle. This paper describes an analysis of
cohesion and tracability into its constitutents properties. The paper suggests that
process-aware integration schema can improve the cohesion and traceability among
product data.

KEYWORDS: Product Lifecycle Management, Information Quality, Product
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 1 Introduction
Product lifecycle management (PLM) concerns the management of lifecycle data - data
associated with an actual instance of a product that records an account of its development,
deployment, operation, maintenance, and disposal.  Interest in PLM has brought focus
and renewed energy to the general problem of managing technical product data.
However, these challenges have existed for several years, and for the most part, PLM is a
perspective on the general problem rather than a specific solution. This paper aligns with
the findings of a workshop on product data management hosted by NIST [Workshop-2].
In that workshop, the notions of information cohesion and traceability were found to be
crucial to improved product data management.

This paper considers the nature of cohesion and traceability and describes its constituents.
The constituents reflect requirements on PLM systems. The paper describes how the
constituents have been addressed elsewhere by various technologies. However, what is
needed is a comprehensive solution, not one focused on individual constituents in
isolation. We therefore present a general architecture for a system supporting PLM based
on a “process-aware” integration schema.



Section 2 of the paper enumerates requirements for supporting cohesion and traceability
of information used in the product lifecycle. Section 3 relates these requirements to
particular technologies, including information modeling and integration schema. Section
4 introduces the idea of a process-aware integration schema and illustrates, through an
example, its role in providing the constituents of cohesion and traceability. The paper is
concluded in Section 5.  

 2 Cohesion and Traceability
Cohesion is knowledge of the interrelationships that exist among data. Traceability is
knowledge of the origin or basis for belief in certain data.  Problems of cohesion and
traceability are particularly severe in engineering environments vis a vis other domains
(e.g. financial) because of the nature of engineering products. For example, (1) the
relationships among product requirements, structure, function and, behavior are complex;
and, (2) regulations and quality certifications may constrain designs and require data on
in-service products.

A principal conclusion coming out of the NIST workshop [Workshop-2] was that current
data management practices do not provide sufficient support of information cohesion and
traceability. Cohesion and traceability, however, are complex and abstract properties
when viewed as attributes of an information system. Information technology does not
address these goals directly, rather certain other qualities help to support these goals. 

We distinguish the following nine constituent properties of cohesion and traceability:
 
� associativity across views : We distinguish two kinds: (1) A conceptual gap is the

absence of the knowledge that two conceptualization can be used for the same
purpose; and, (2) An associativity gap [Peak-2] is the absence of the knowledge that
two references refer to the same thing.  

� effectivity : a qualification, defined in terms of the configuration of a product, its
production date or serial number, that determines whether the data applies to a
particular instance of the product. “Instance of the product” here might be a
conceptualization, such as a part family. Effectivity is a modality, a qualification on
the truth of an assertion. 

� authority : the power that data or an assertion has due to an approval it is granted or
an estimate of its maturity. Approvals and estimates of maturity are ultimately
underwritten by a role in the organization. 

� origin in requirements : relationships that indicates how the data are related to
requirements (e.g. design rationale, trace relationships). This is a systems engineering



sense of traceability.

� origin in process : relationships that indicate how (through what process) the data
were produced, validated, authorized for use, or constrained. This is an engineering
management sense of traceability.

� origin in media : relationships that indicate where the data reside. “media” might not
be as concrete as “on the disk of computer xyz” but rather “in the CAD repository of
designs approved for manufacture.” This is an information technology sense of
traceability.

� origin in other belief : relationships that indicate the logical support for the data (e.g.
validation testing results, an idealization described in mathematics, component
characteristics from the supplier). The logical support of a belief may change over
time. The assumptions on which it rests may no longer be true, or may be found to
have been false all along. This is a logical sense of traceability.

� logical consistency : this includes type awareness, interpretation constraints and
well-formedness conditions. Type awareness concerns knowledge of the type of thing
to which the data refers. Type reference data may include units of measure.
Interpretation constraints are assertions about what roles a particular type can serve.
For example, a resistor can be part of an electrical circuit. Well-formedness conditions
constrain the structure of the data to be consistent with the system of expression
(syntax, domain of values etc.) in which it is defined. 

� measurement conditions : (if the datum is a measured or computed value) reference
to the process by which it was measured or computed, degree of confidence, or a
statement of numerical accuracy.

These constituent properties provide a context to the data that the system manages.
Together they determine the confidence one places in the data and thus its power to affect
the course of action. The constituents describe an epistemological basis of product
lifecycle data.

 3 Constituents and Technologies
Each constituent reflects a set of requirements onto the PLM system. In some instances,
there are obvious relationships between those requirements and certain technologies. For
example, mapping languages [Express-X], engineering frameworks [Peak-2], and
integration schema [ISO15926-2] address associativity gaps. Nonetheless, possessing a
solution in an isolated technology is usually not sufficient. The constituents interrelate in
ways that make it impossible for the total solution to be successful when each is
addressed in isolation. More optimistically, technologies can be reused to address



multiple constituents. For these reasons, the challenges of cohesion and traceability
require a comprehensive architecture, not piecemeal solutions. However, before we
describe such an architecture, we briefly overview some of the strongest links between
particular constituents and technologies.

 3.1 Associativity across views: integration schema
The various engineering disciplines use differing tools and models in their work. When
communicating across disciplines, information must be mapped from the viewpoint and
models of one discipline to the viewpoint and models of another. An associativity gap is
the absence of the knowledge that two references made from different viewpoints refer to
the same thing. [Peak-2] Often, human intervention is required to bridge associativity
gaps. It has been estimated that about one million fine-grained associativity gaps are
bridged in the structural analysis of an airframe [Peak-2]. 

Associativity gaps are distinguished from conceptual gaps as different usages of the term
“semantics.”  The term is often used ambiguously. By semantics, we mean either how a
thing is referenced or the sense of the thing [Frege], [Quine]. Frege's  oft-cited example is
that of the “morning star” and the “evening star.” The morning star appears in the
morning in the east. The evening star appears in the evening in the west. However, both
terms often refer to the same celestial object, Venus. Reference integrity may be
necessary but sense consistency (even one reflecting an incomplete understanding of the
domain) is often sufficient. The context of the problem determines what model is needed.
In the case of the morning and evening stars, ancient navigators did not need to be aware
of the equivalence among references. Sense consistency is sufficient for their purposes. 

Generally speaking, associativity gaps occur in data, and conceptual gaps occur in
schema, or across multiple schema. For example, a CAD model might define the
tolerance of a geometric feature. A tolerance stack-up analysis might require the tolerance
of that same feature. If we do not know that the feature in the tolerance analysis is the
same feature as in the CAD model, then it is impossible to make use of the tolerance
values as defined in CAD model. This is an associativity gap. It is bridged by explicitly
equating references among things. Bridging associativity gaps makes available additional
information about the thing referenced. On the other hand, a planning system may not be
able to obtain the duration of a task because it has been provided with a start time and a
stop time, but not the fact that duration is stop time minus start time. This is a conceptual
gap. It is bridged by defining logical relationships among elements of the schemas
governing the data. Bridging conceptual gaps makes existing data governed by the
schemas more useful, without explicitly referencing any of that data.

When a conceptual gap concerning identity conditions [Guarino] is resolved, it may be
possible to resolve associativity gaps among the individuals identified by those
conditions. An identity condition is a property expressed in the data by which one can



distinguish individuals. Thus employee-number would be an identity condition for
employees in some database if it uniquely identifies employees. Identity conditions may
differ across viewpoints. In the CAD / tolerance model example above, geometric
position on the part is an identity condition for geometric features. However, the CAD
model and the tolerance model might use differing coordinate systems to identify the
feature.1 If these differences can be resolved, the solution to the associativity gap can be
expressed as a binary predicated (e.g. same-position) with tuples naming features in the
two viewpoints. 

Conceptual gaps that concern identity conditions are resolved by equating identity
conditions across viewpoints. Conceptual gaps that do not concern identity conditions,
such as illustrated by the planning system example above, may require domain
knowledge and use of a logical language to state the conceptual relationship (e.g. that
duration is stop time minus start time). 

Integration schema [ISO15926-2], [EIA-927] are schema designed to accommodate and
interrelate multiple discipline-centric viewpoints of their subject matter. These discipline-
centric viewpoints are represented by systems and databases of their own. Integration
schema address both associativity gaps and conceptual gaps. 

Typically, integration schema contain provisions to accommodate differences in
conceptual scope and conceptual factoring (i.e. choice of concepts covering the domain).
However, some schema achieve the goal of accommodating multiple viewpoints without
these special provisions because the viewpoints within their scope are known in advance.
The STEP electromechanical application protocol, AP210 [ISO10303-210], for example,
is an integration schema of this sort. It provides usage and design views, including a
functional design view, and the encapsulation of simulation views. The difference
between AP210 and things nominally referred to as integration schema derives from the
anticipation of scope and usages in the former. Because AP210 concerns a cohesive
subject matter known a priori (electromechanical products), most of the problems of
incompatible conceptual scope and conceptual factoring were anticipated during schema
design and have been eliminated.  

Typically, integration schema designers do not have the luxury of knowing the embodied
viewpoints in advance. Instead, the integration schema may serve as a meta-model to
those viewpoints it concerns. The meta-model allows the integration schema to “late
bind” semantics from those viewpoints by embodying, as data, aspects of the discipline-
specific schema. The meta-model helps to identify relationships among concepts in the
various viewpoints. This is not a role commonly associated with meta-models (e.g. the
UML meta-model [UML]) and accordingly, integration-schema-as-meta-model provide

1 This illustrates the added challenge of resolving associativity gaps among engineering data. In the
employee database the identity condition is a key in a relational table, and is documented in the schema
as such. In the engineering data, geometric transformation may be necessary and issues of numerical
precision must be considered.



an unusually elaborate high-level conceptual model2 when compared with these other
meta-models.

In its role as a meta-model to discipline-specific tool schema, the integration schema
serves to eliminate conceptual gaps.

Databases built on the integration schema do not only embody discipline-specific
viewpoint schema, but also instance data produced from systems supporting those
viewpoints. It may not be possible (nor necessary) to embody all the information from
discipline-centric viewpoints. Instead, the database may record only information that
improves cohesion and traceability. The database may also note the creator and creation
time of entries in the originating discipline-centric systems and databases. [ISO15926-2]

In its role as a repository for data created by discipline-specific tools, the integration
schema serves to eliminate associativity gaps.

 3.2 Logical consistency: information modeling
The constituent logical consistency concerns type awareness, interpretation constraints
and well-formedness conditions on information. These requirements are addressed by
information modeling languages, including conceptual modeling languages, ontologies,
and related methods. 

Information modeling languages serve prescriptive and descriptive purposes. In a
prescriptive role, the language is used to define schemas which “govern” data; the focus
here is on the well-formedness of the data as a whole. Typically that “whole” is the unit
of exchange among software tools. In a descriptive role, the language serves to
distinguish types within the population, and defines relations on those types; the focus
here is on providing a viewpoint on populations that range without regard to fitness to a
particular application.  Descriptive provisions primarily address the population whereas
prescriptive provisions primarily addresses data about the population. By design,
modeling languages vary with respect to how well they address prescriptive and
descriptive needs. EXPRESS [ISO10303-11], for example, is predominantly used in a
prescriptive role, accordingly it provides an abstract data type language by which it
specifies well-formedness conditions on a population of data entities built from primitive
types. Ontologies, on the other hand,  typically serve a descriptive role and concern the
population directly.

The sense of well-formedness, as it relates to the exchange of data, varies among
languages. The abstract data type language of EXPRESS explicitly specifies what

2 The “high-level conceptual model” elaborates upon concepts in the neighborhood of “thing.” The
EPISTLE core model version 4.2, for example, distinguishes things that can exist (“individuals”) from
conceptual things; “single individuals” from “plural individuals” etc. This model is a “conceptual meta-
model,” unlike the “storage meta-model” that is the UML meta-model.



properties are to be included in the exchange of EXPRESS entity instances (those
properties that are the mapped attributes of the entity type). This is one purpose of the
EXPRESS notion of well-formedness. XML Schema (though not an information
modeling language per se) can specify similar constraints on the form of XML files. On
the other hand,  the Web Ontology Language (OWL) [OWL] makes no such stipulation.
OWL does not specify what properties of the instance are to be included in an exchange.
Separating concept modeling issues from exchange issues (and dealing with exchange
issues where they arise using XML Schema) is a common approach in more recent
modeling languages.

In addition to these considerations, modeling languages provide various solutions to the
following issues (among others): 

� associations/attributes : Some languages (e.g. entity-relationship languages) do not
distinguish attributes from associations (Attributes are relationships between an entity
type and a value type. Associations are relationships among entity types.) 

� open/closed world assumption : A closed-world model entails that if some assertion
cannot be shown to hold, then the negation of that assertion hold. (e.g. If it is not the
case that p(x) then NOT p(x).) 

� primitive/defined distinction : Some languages, particularly description logics,
explicitly distinguish “defined” concepts from “primitive” concepts. Defined concepts
are concept for which necessary and sufficient conditions are provided. Primitive
concepts are concepts for which conditions stated may be necessary but are not
sufficient. A conservative definition does not introduce a new primitive concept.

� meta content : Some languages embody definitions of their own modeling primitives.
In the case of Suggested Upper Merged Ontology (SUMO), [SUMO-1], [SUMO-2]for
example, some of the representational machinery is defined using itself. (KIF [KIF]is
also used in SUMO). 

� class/instances distinction : Some languages bridge the distinction between classes
and instances; in these it is possible to treat a class as a kind of instance. 

� information structure : Some languages, particularly information and object
modeling languages, allow modelers to define “entity types” as structures built around
value types (strings, integers etc.). 

� data types : Some languages identify certain value spaces (e.g. strings, numbers, point
in time), as primitive building blocks of other types. They may define an encoding
scheme on those types for use in data exchange.

� quantifiers : Some languages, such as those based on first order logic, have explicit



quantifiers (e.g. “for all” and “there exists”). These are used to express the quantity of
individuals in a population (zero, at least one, all) that satisfy some condition. 

N.B. Where a language falls with respect to these issues cannot in itself be judged as an
advantage nor disadvantage. What is an advantage in one use of the language may be an
obstacle in another. For example, it is probably wrong for a conceptual modeling
language to distinguish attributes from associations. Conceptual modeling languages,
their purpose being to distinguish types of individuals in some population and draw
relationships among those types, should not make commitments with respect to attributes
and associations. [Halpin2]

 3.3 Origin in process: process specification 
The activities of the product lifecycle occur in processes (patterns of activity).
Documented processes may be required by regulation and for certification, (e.g. ISO
9000 certification, [ISO9000]). Informal, undocumented processes occur in all
manufacturing activity. The explicit specification of processes can help management in
decision making (e.g. process re-engineering) and provide input to automation (e.g.
workflow systems). 

The Process Specification Language (PSL) is a formal, model-theoretic ontology for
process specification. PSL consists of core theories and extensions. This modular
approach, and a method of axiomatizing concepts from other process specification
languages [Gruninger], makes PSL suitable for the integration of information from other
software tools. [Cheng]

The definitional extensions of PSL contain concepts needed for reasoning about industrial
processes including conditional, triggered and iterated activities, duration-based
constraints, and reusable, consumable, renewable, and deteriorating resources.
[Gruninger]

For our application, a particularly important attribute of PSL relative to other process
specification method is its ability integrate with an ontology. Process definitions in PSL
extension theories provide the notions of precondition and effects, which are used to
describe changes of state caused by execution of an activity occurrence of the process.
These changes of state concern domain entities (in our case, product components,
machines etc.). Both PSL and SUMO are defined in KIF. If the two were used together,
SUMO-based concepts could be referenced as preconditions and effects.
 

 4 Process-aware integration schema
Integration schema provide a tool for the integration of diverse information. Systems



based around integration schema interact with discipline-specific application systems and
their associated data. Integration schema serve to address associativity across views and
logical consistency as described above. A central point of this paper is that cohesion and
traceability is increased when integration schema are augmented with process knowledge.
The process knowledge used by these schema describes business processes associated
with the data of the application systems. To elaborate upon this, note that the constituent
origin in process provides meta-data that specifies the process3 that produced, validated,
constrained the application of, or authorized the use of, the subject data. It is important to
note here that (1) cohesion and traceability concerns not only the business processes that
produce the data, but also those that validate, constrain, and authorize them; and, (2)
processes “point outside themselves” to  constituents. That is, documenting the activity
occurrence leads to documenting authority, effectivity, measurement conditions, or origin
in other belief – provided that the process ontology itself is detailed enough to assert that
a consequence of executing the process is to affect these constituents of the subject data.
This point is illustrated in Figure 1.

3 More accurately, using PSL terminology, it is not a process (pattern of activity) that is documented as
meta-data, but a complex activity occurrence. Processes are concepual whereas activity occurrences
exist at a certain time and place. 



Five constituents have strong links to process: 

� Authority : information has the authority granted it by a formal, informal, or implicit
approval process;

� Effectivity : an engineering change (EC) process determines whether data is effective
with respect to a particular product instance or product configuration;

� Origin in other belief : the logical support for the data may be the result of a validation
process, assumptions present in the idealization employed, or experience in the field;

� Origin in media : the presence of the data on a particular media (database, design
repository etc.) is the result of process that uses the organization's information
technology;

� Measurement conditions : in some situations, the conditions under which the
measurement is made can be described by a process.

In order to illustrate how process specifications can help interrelate data that would
otherwise remain isolated, we consider an example. Figure 2, is an IDEF0 [IDEF0]
diagram depicting a design process for assembly on printed wiring boards (PWBs). In the
process, components are placed on the PWB by use of a layout tool or mechanical CAD
system. Design issues concerning the placement of a component include radio frequency

Figure 1: When activity occurrence meta-data is associated with the subject data, 
data from other application usage is related, and additional constituents can be realized.
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(RF) interference from other components (if the board contains RF circuitry) and thermal
conditions during the soldering process. The placement of neighboring components, and
the copper pads on the PWB to which they are soldered, contribute to the thermal mass of
the region, and the thermal conditions the component experiences during soldering. The
placement activity is followed by wire routing and then validation. Validation may
include engineering simulations for thermal properties, producibility, and vibration. The
design cycle of “place, route and validate” is repeated with incremental refinement of the
placements until the engineering analyzes suggest that an acceptable design has been
found. 

The “place, route, and validate” design cycle is embedded in an activity cycle which
includes manufacture and inspection. Defects found on inspection are analyzed for
causes, and results are integrated into the “lessons learned” of design guidelines. Of
course, excessive defects can also lead to an engineering change order.

A common manufacturing defect occurring during the soldering process (part of
Fabricate as depicted in Figure 2), is tombstoning of small components. Tombstoning is
a phenomenon where a component is raised and detached from the PCB at one end while
remaining bonded to the board at the opposite end.  Tombstoning is due to uneven
surface tension in the molten solder at opposing ends of the component. This can be the
result of non-uniform cooling or heating, an excessive volume of solder paste, inaccurate

Figure 2 Circuit board design process
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placement of the component or paste, overly large pads, uneven thermal mass at opposing
pads, and inappropriate solder paste alloy, among other causes. [Lim]

One role for process-aware integration schema in this environment is to bring together all
the data that might bear on tombstoning, for example. At every intermediate point in the
evolution of the information systems of the enterprise, a lack of access to potentially
useful information results in less-than-optimal performance. For example, ideally the
PCB component layout software would embody solder thermal dynamics knowledge that
is intellectual property of the enterprise. But if the layout software is commercial off-the-
shelf, it is difficult to see how this need could be realized in the layout software without
benefiting competitors. 

The following illustrate possible roles for a process-aware integration schema:

� Identifying resources actually used : The initial wire routing may be preformed with
an automated tool. If that routing violates design rules, or does not pass validation,
then subsequent re-routings may be performed manually with a CAD system. An
activity occurrence can be registered in the integration schema for each routing design.
Knowledge that the CAD tool was used in the activity occurrence (as opposed to the
automated tool) indicates a deliberate act (authority constituent). Also, a history of
such information may be used to improve the automated tool or estimate development
cost.

� Identifying process parameters : The suppliers of components may recommend
soldering process information, such as a reflow profile -- the ideal temperature
gradient for soldering the component to the board. However, reflow ovens (used in
soldering) by design must subject the entire board to single temperature gradient. Thus
the reflow profile selected may be inappropriate for some components on the board.
By defining reflow processes for each reflow profile, and associating components with
the recommended process, a soldering activity occurrence that documents which
process is invoked links component characteristic data to manufacturing process
information. Here the integration schema serves to bind process information with
component characteristics.

� Identifying design parameters : Likewise, suppliers of components may recommend
the solder pad layout (geometric design of the mating surface on the PCB).  Typically
the PCB designer may choose a design that is widely applicable, but in problematic
situations the designer may want to consider the recommendation of the component
supplier.

� Tracking upstream introduction of error : the source of a problem detected during
the validation or testing activities may be easier to trace through a hierarchical
decomposition of activity occurrences and their process descriptions than it is by an
analysis of transactions against a product data management system.

The examples above require fine grain process specification. The preconditions and
postconditions of such processes may refer to concepts that would needed to be modeled.
The cost of this modeling effort is significant, but is inevitable if relations across



viewpoints are to be made. Further, in order to register information during actual
processing, information mapping into the structures of the integration schema would also
be required. 

 5 Conclusion
We described the requirements on PLM systems as being founded in constituents
properties of data cohesion and traceability. We described a method to bind together, into
a comprehensive process-oriented ontology, the product lifecycle data produced by the
various software tools used by an enterprise. Presentation of this method is intended to
illustrate aspects of the problem, not provide a solution of immediate value. Employing
process knowledge in an integration schema increases the cohesion and traceability of the
life cycle data. 

Important obstacles to the implementation of these ideas exist, such as how applications
can be wrapped, or output mapped, to produce entries in the integration schema. There is
also the matter of making use of the added cohesion and traceability, which the method
isolates into the integration schema. Note here that the method accounts for eight of the
nine constituents, but origin in requirements, is not discussed in length. Our hope is that a
system built around a process-aware integration schema can become the kernel of a
systems engineering4 tool, where systems engineering information (requirements,
requirement allocations, property roll-ups, objective functions, etc.) can be layered over
the integration schema database.

Assuming that these obstacles can be overcome, PSL and SUMO (with a manufacturing
extension) seem particularly well suited to provide the process-ontology required by the
integration schema. Depending on the industrial sector, AP210, the Core Product Model,
or ISO 15926 appear to be best suited to provide other concepts in the integration
schema. 

The authors and their colleagues are developing AP210 and AP210 tools, the Core
Product Model [Fenves], PSL and PSL tools, information mapping techniques and tools,
[Express-X] and automated methods of integration [Denno]. This foundational work
should lead to the ability to implement the central components of a process-aware
integration schema.
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