

NISTIR 7165

Applications of PSL to
Semantic Web Services

Michael Gruninger

NISTIR 7165

Applications of PSL to
Semantic Web Services

Michael Gruninger
Manufacturing Systems Integration Division

National Institute of Standards and Technology
Gaithersburg, MD 20899-8260

September 2004

U.S. DEPARTMENT OF COMMERCE
Carlos M. Gutierrez, Secretary

TECHNOLOGY ADMINISTRATION
Michelle O’Neill, Acting Under Secretary of Commerce for Technology

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
William Jeffrey, Director

Applications of PSL to Semantic Web Services

Michael Gruninger1

Institute for Systems Research, University of Maryland, College Park, MD 20742
gruning@cme.nist.gov

Abstract. In this paper we will show how the ontology of the Process
Specification Language can be used as an upper-level process ontology
that serves as the semantic foundation for the DAML-S ontology for web
services.

1 Semantics for Web Services

To achieve the vision of the Semantic Web, software agents will need a computer-
interpretable description of the services they offer and the information that they
access. Such a description can be provided by an ontology, which explicitly repre-
sents the intended meanings of the terms being used. Within the DARPA Agent
Markup Language program, an ontology of services called DAML-S has been
proposed to support the discovery, invocation, and composition of the services
offered by software agents on the Semantic Web.

The Process Specification Language (PSL) ([2], [4], [5]) has been designed
to facilitate correct and complete exchange of process information among manu-
facturing systems 1. Included in these applications are scheduling, process mod-
eling, process planning, production planning, simulation, project management,
workflow, and business process reengineering. In this paper we will show how
PSL can be used as an upper-level process ontology that serves as the semantic
foundation for an ontology for web services that extends DAML-S.

Any ontology that supports the representation of web services will consist of
generic classes to support service specification as well as classes of constraints in
service specifications, such as ordering, temporal, occurrence, and duration.

The ontology must also support reasoning problems for web service speci-
fications such as determining the consistency of a service specification and the
composability of services, particularly with incomplete service specifications.

The approach taken in this paper will be to specify a first-order semantics for
DAML-S concepts through PSL translation definitions and then use the gram-
mars associated with PSL classes as an abstract syntax for service specifications.

1 PSL is project ISO 18629 within the International Organisation of Standardisation,
and has been accepted as a Draft International Standard.

2

2 The Role of First-Order Logic

The PSL Ontology is a set of theories in the language of first-order logic. There
are several other approaches to semantics for web services, such as BPEL [1],
for which Petri nets and π-calculus have been proposed as the basis for their
semantics. However, a first-order semantics has several advantages. First, we
can specify and implement inference techniques that are sound and complete
with respect to models of the theories. Also, a process ontology with a first-
order axiomatization can be more easily integrated with other ontologies (which
are almost all first-order theories themselves). Finally, a first-order semantics
allows a simple characterization of incomplete service specifications.

The semantics of a first-order theory are based on the notion of an interpre-
tation that specifies a meaning for each symbol in a sentence of the language. In
practice, interpretations are typically specified by identifying each symbol in the
language with an element of some algebraic or combinatorial structure, such as
graphs, linear orderings, partial orderings, groups, fields, or vector spaces; the
underlying theory of the structure then becomes available as a basis for reasoning
about the concepts and their relationships.

First-order logic is sound and complete – a theory is consistent if and only
if there exists a model that satisfies the axioms of the theory. This allows us to
evaluate the adequacy of the application’s ontology with respect to some class
of structures that capture the intended meanings of the ontology’s terms by
proving that the ontology obeys the following two fundamental theorems:

– Satisfiability: every structure in the class is a model of the ontology.
– Axiomatizability: every model of the ontology is isomorphic to some struc-

ture in the class.

The purpose of the Axiomatizability Theorem is to demonstrate that there do
not exist any unintended models of the theory, that is, any models that are not
specified in the class of structures. In general, this would require second-order
logic, but the design of PSL makes the following assumption (hereafter referred
to as the Interoperability Hypothesis): The ontology supports interoperability
among first-order inference engines that exchange first-order sentences. By this
hypothesis, we do not need to restrict ourselves to elementary classes of struc-
tures when we are axiomatizing an ontology. Since the applications are equivalent
to first-order inference engines, they cannot distinguish between structures that
are elementarily equivalent. Thus, the unintended models are only those that
are not elementarily equivalent to any model in the class of structures.

Classes of structures for theories within the PSL Ontology are therefore ax-
iomatized up to elementary equivalence – the theories are satisfied by any model
in the class, and any model of the core theories is elementarily equivalent to
a model in the class. Further, each class of structures is characterized up to
isomorphism.

3

3 PSL Ontology

Within the PSL Ontology, there is a further distinction between core theories and
definitional extensions. Core theories introduce new primitive concepts, while all
terms introduced in a definitional extension that are conservatively defined using
the terminology of the core theories 2.

6

6

6

6

.........
....

.........
....

.........
....

.........
....

.........
....

.........
....

.........
....

.........
....

.........
....

.........
.........
........

�

@
@

@
@

@@I

@
@

@
@

@@I

.........
....

.........
.........
........

�

Tpsl core

Tactocc

Tocctree
Tsubactivity

Tcomplex

Tduration

Tatomic Tdisc state

Fig. 1. The core theories of the PSL Ontology. Solid lines indicate conservative exten-
sion, while dashed lines indicate an extension that is not conservative.

3.1 Core Theories

All core theories within the ontology are consistent extensions of PSL-Core
(Tpsl core), although not all extensions need be mutually consistent. Also, the
core theories need not be conservative extensions of other core theories. The re-
lationships among the core theories in the PSL Ontology are depicted in Figure
1.

2 The complete set of axioms for the PSL Ontology can be found at
http://www.mel.nist.gov/psl/psl-ontology/. Core theories are indicated by a
.th suffix and definitional extensions are indicated by a .def suffix.

4

Occurrence Trees The occurrence trees that are axiomatized in the core theory
Tocctree are partially ordered sets of activity occurrences, such that for a given
set of activities, all discrete sequences of their occurrences are branches of the
tree (see Figure 2). An occurrence tree contains all occurrences of all activities;
it is not simply the set of occurrences of a particular (possibly complex) activity.
Because the tree is discrete, each activity occurrence in the tree has a unique
successor occurrence of each activity.

�
�

�

@
@

@
@

@
@

@
@

@

�
�

�

@
@

@�
�

�

@
@

@

@
@

@

A
A
A
A
A
A

�
�
�
�
�
�

@
@

@

@
@

@

@
@

@

@
@

@

@
@

@ �
�

�

o4
12

o4
19

o2
20

o4
28

o4
22

o4
4

o2
8

o2
5

o2
3

o4
7

o4
16

o1
17

o4
2

o1
1

o2
23

o3
31

o4
26

o2
18

o4
24.

o4
30 o3

34

o1
21 o3

27

o3
33

o1
29

o3
6

o3
11

o4
10 o3

15

o3
9

o4
14

o3
13

. . .o3
25

. . .o3
32

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.

.

. . .

Fig. 2. Example of legal occurrence trees. The elements o1
i denote occurrences of the

activity a1, o2
i denote occurrences of the activity a2, o3

i denote occurrences of the
activity a3, and o4

i denote occurrences of the activity a4. The activity occurrences o1
1

and o4
16 are the initial occurrences in their respective occurrence trees.

There are constraints on which activities can possibly occur in some domain.
This intuition is the cornerstone for characterizing the semantics of classes of
activities and process descriptions. Although occurrence trees characterize all
sequences of activity occurrences, not all of these sequences will intuitively be
physically possible within the domain. We will therefore want to consider the
subtree of the occurrence tree that consists only of possible sequences of activity
occurrences; this subtree is referred to as the legal occurrence tree.

5

Discrete States The core theory Tdisc state introduces the notion of state (flu-
ents). Fluents are changed only by the occurrence of activities, and fluents do not
change during the occurrence of primitive activities. In addition, activities have
preconditions (fluents that must hold before an occurrence) and effects (fluents
that always hold after an occurrence).

Subactivities The PSL Ontology uses the subactivity relation to capture the
basic intuitions for the composition of activities. This relation is a discrete partial
ordering, in which primitive activities are the minimal elements.

Atomic Activities The core theory Tatomic axiomatizes intuitions about the
concurrent aggregation of primitive activities. This concurrent aggregation is
represented by the occurrence of concurrent activities, rather than concurrent
activity occurrences.

Complex Activities The core theory Tcomplex characterizes the relationship
between the occurrence of a complex activity and occurrences of its subactivities.
Occurrences of complex activities correspond to sets of occurrences of subactivi-
ties; in particular, these sets are subtrees of the occurrence tree. An activity tree
consists of all possible sequences of atomic subactivity occurrences beginning
from a root subactivity occurrence. In a sense, activity trees are a microcosm
of the occurrence tree, in which we consider all of the ways in which the world
unfolds in the context of an occurrence of the complex activity.

Different subactivities may occur on different branches of the activity tree i.e.,
different occurrences of an activity may have different subactivity occurrences or
different orderings on the same subactivity occurrences. In this sense, branches
of the activity tree characterize the nondeterminism that arises from different
ordering constraints or iteration.

An activity will in general have multiple activity trees within an occurrence
tree, and not all activity trees for an activity need be isomorphic. Different
activity trees for the same activity can have different subactivity occurrences.
Following this intuition, the core theory Tcomplex does not constrain which sub-
activities occur. For example, conditional activities are characterized by cases
in which the state that holds prior to the activity occurrence determines which
subactivities occur. In fact, an activity may have subactivities that do not oc-
cur; the only constraint is that any subactivity occurrence must correspond to
a subtree of the activity tree that characterizes the occurrence of the activity.

3.2 Definitional Extensions

Many ontologies are specified as taxonomies or class hierarchies, yet few ever
give any justification for the classification. If we consider ontologies of math-
ematical structures, we see that logicians classify models by using properties
of models, known as invariants, that are preserved by isomorphism. For some

6

classes of structures, such as vector spaces, invariants can be used to classify
the structures up to isomorphism; for example, vector spaces can be classified
up to isomorphism by their dimension. For other classes of structures, such as
graphs, it is not possible to formulate a complete set of invariants. However, even
without a complete set, invariants can still be used to provide a classification of
the models of a theory.

Following this methodology, the set of models for the core theories of PSL are
partitioned into equivalence classes defined with respect to the set of invariants
of the models. Each equivalence class in the classification of PSL models is
axiomatized using a definitional extension of PSL. In particular, each definitional
extension in the PSL Ontology is associated with a unique invariant; the different
classes of activities or objects that are defined in an extension correspond to
different properties of the invariant. In this way, the terminology of the PSL
Ontology arises from the classification of the models of the core theories with
respect to sets of invariants. The terminology within the definitional extensions
intuitively corresponds to classes of activities and objects.

4 Translation Definitions

Translation definitions specify the mappings between PSL and application on-
tologies. Such definitions have a special syntactic form – they are biconditionals
in which the antecedent is a class in the application ontology and the consequent
is a formula that uses only the lexicon of the PSL Ontology.

Translation definitions are generated using the organization of the defini-
tional extensions. Each invariant from the classification of models corresponds
to a different definitional extension. Any particular activity, activity occurrence,
or fluent will have a unique value for the invariant. Each class of activity, activ-
ity occurrence, or fluent corresponds to a different value for the invariant. The
consequence of a translation definition is equivalent to the list of invariant values
for members of the application ontology class.

4.1 DAML-S Translation Definitions

In this section we will present the translation definitions 3 for concepts in the
DAML-S Process Ontology. Such translation definitions provide a first-order
axiomatization of the intended semantics for the DAML-S constructs. Moreover,
this axiomatization inherits the proofs of the Axiomatizability and Satisfiability
Theorems from the underlying PSL Ontology.

Atomic Activities The composedOf property in DAML-S is equivalent to the
subactivity relation in PSL:

3 The translation definitions in this paper are written in the Knowledge Interchange
Format. For more information on this language, see http:cl.tamu.edu.

7

(forall (?a1 ?a2)
(iff (composedOf ?a1 ?a2)

(subactivity ?a2 ?a1)))

Within DAML-S, an AtomicProcess has no subprocesses; consequently, this
corresponds to a primitive activity within PSL.

(forall (?a)
(iff (AtomicProcess ?a)

(and (primitive ?a)
(markov_precond ?a)
(or (markov_effects ?a)

(context_free ?a)))))

The most common cconstraint on the legal occurrences of an activity specify
the activity’s preconditions. Activities whose preconditions depend only on the
state prior to the occurrences. The class of activities with markov preconditions
is defined in the PSL definitional extension state precond.def .

Effects characterize the ways in which activity occurrences change the state of
the world. Such effects may be context-free, so that all occurrences of the activity
change the same states, or they may be constrained by other conditions. The
most common constraints are state-based effects that depend on the context; the
class of activity associated with such constraints are defined as markoveffect
activities in the PSL extension state effects.def .

A CompositeProcess in DAML-S is decomposable into other processes. Within
PSL, the corresponding activity cannot be primitive; it will either be atomic (in
which case it is a concurrent activity) or complex:

(forall (?a)
(iff (CompositeProcess ?a)

(and (activity ?a)
(not (primitive ?a)))))

Ordered Activities The classification of models within the the PSL Ontology
leads to classes of activities, activity occurrences, and fluents. Classes of activity
occurrences correspond to invariants for activity trees. The translation defini-
tions for remaining DAML-S concepts are all related to invariants for activity
trees.

Within DAML-S, a Sequence is a list of processes to be done in order (see
Figure 3) 4. The translation definition for Sequence has two parts; one says that
there exists an activity tree for the activity which is ordered and which is simple

4 All of the examples in this section refer to the activities whose process descriptions
are found in the Appendix.

8

A
A�

�

A
A�

�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

��
@

@
@

@
@

@
@

@
@@

�
�A

A-

�
�A

A-

o1 o2

o3 o4

. . .

. . .

Fig. 3. Example of activity trees for transfer, which is a Sequence DAML-S activity.
o1 and o3 are occurrences of the subactivity withdraw, while o2 and o4 are occurrences
of the subactivity deposit. Note that the diagram depicts two separate activity trees
within a stylized legal occurrence tree.

and rigid (that is, there are no nontrivial permutations of subactivity occur-
rences). The second part says that the activity is uniform, that is, all activity
trees for the activity are isomorphic: 5

(forall (?a)
(iff (Sequence ?a)

(and (uniform ?a)
(exists (?occ)

(and (occurrence_of ?occ ?a)
(simple ?occ)
(rigid ?occ)
(ordered ?occ)
(strong_poset ?occ))))))

In a DAML-S Split activity, sets of subactivities are performed in parallel
(see Figure 4). Split activities differ from Sequence activities in that there

5 Two branches of an activity tree are isomorphic if there is a one-to-one mapping of
subactivity occurrences that preserves the activities, e.g. occurrences of activity a1

are mapped to occurrences of a1. Two activity trees are isomorphic if all of their
branches are isomorphic. In the visual convention adopted in this paper, occurrences
of different activities are depicted by different shapes; thus, a mapping that preserves
activities will map a square to a square, a circle to a circle, and so on.

9

exist nontrivial permutations of subactivity occurrences among the branches of
the activity trees, so that the translation definition becomes:

����
����

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

��
@

@
@

@
@

@
@

@
@@

-

-

�
��

@
@R

A
A�

�
�

�A
A

A
A�

�
�

�A
A

--

- -

o1 o2

o7 o8

o3 o4

o5 o6

. . .

Fig. 4. Example of an activity tree for buy product, which is a Split DAML-S activity.
For this purposes of this example, consider transfer to be a complex activity, with
deposit and withdraw as subactivities.

(forall (?a)
(iff (Split ?a)

(and (uniform ?a)
(exists (?occ)

(and (occurrence_of ?occ ?a)
(not (simple ?occ))
(ordered ?occ)
(strong_poset ?occ))))))

For example, in Figure 4, the two branches of the activity tree consist of
isomorphic subactivity occurrences that occur in different orderings on each
branch.

According to [3], the Unordered construct allows process components to be
executed in some unspecified order, although all components must be executed.
This is equivalent to the class of bag activity trees within the PSL Ontology:

(forall (?a)
(iff (Unordered ?a)

10

����
����

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

��
@

@
@

@
@

@
@

@
@@

-

-

�
��

@
@R

o1 o2

o4o3

. . .

Fig. 5. Example of an activity tree for buy product, which is an Unordered DAML-S
activity. For the purpose of this example, consider transfer to be a primitive activity;
o1 and o4 are occurrences of the subactivity (transfer ?Fee ?Buyer ?Broker), o2 and
o4 are occurrences of the subactivity (transfer ?Cost ?Buyer ?Seller).

(and (uniform ?a)
(exists (?occ)

(and (occurrence_of ?occ ?a)
(bag ?occ))))))

In Figure 5, we see an example of an activity tree that is the unordered
activity with two subactivities.

Nondeterminism The simplest form of nondeterminism is captured by the
class of activities in which some subactivity occurs (see Figure 6). Given this
intended semantics, the translation definition to PSL would be:

(forall (?a)
(iff (Choice ?a)

(and (uniform ?a)
(exists (?occ)

(and (occurrence_of ?occ ?a)
(simple ?occ)
(rigid ?occ)
(unordered ?occ)
(choice_poset ?occ))))))

11

����

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

��
@

@
@

@
@

@
@

@
@@

�
�

�
��

@
@

@
@R

o1

o2

. . .

Fig. 6. Example of an activity tree for a Choice DAML-S activity that is equivalent
to a choice poset in PSL. In this example, o1 is an occurrence of a withdrawal from
Account1 and o2 is an occurrence of a withdrawal from Account3.

There are some indications in [3] that the intended semantics for Choice
activities is more general than this translation definition. For example, some
possible applications of this construct may be intended to capture intuitions such
as “choose subactivities and perform them in sequence” or “choose subactivities
and perform them in parallel.” In such cases, the corresponding PSL class would
be based on the notion of weak posets (see Figure 7), so that the translation
definition would be:

(forall (?a)
(iff (Choice ?a)

(and (uniform ?a)
(exists (?occ)

(and (occurrence_of ?occ ?a)
(simple ?occ)
(weak_poset ?occ))))))

In addition, there are suggestions in [3] for extensions that construct new
subclasses such as “choose exactly n subactivities from m.” Such extensions do
not correspond to any classes within Version 2.0 of the PSL Ontology.

Conditional Activities The class of IfThenElse activities within DAML-S
are equivalent to conditional activities in PSL:

12

����
����

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

��
@

@
@

@
@

@
@

@
@@

�
�

�
��

@
@

@
@R

- -

o1

o3 o4

o2

. . .

Fig. 7. Example of an activity tree for a Choice DAML-S activity that is equivalent to
a weak poset in PSL.

��������

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

��
@

@
@

@
@

@
@

@
@@

o2

o1

· · ·

· · ·

o3

· · ·

Fig. 8. Example of activity trees for withdraw, which is an IfThenElse DAML-S activ-
ity. o2 and o2 are occurrences of the subactivity change balance, and o1 is an occurrence
of the subactivity notify.

13

(forall (?a)
(iff (IfThenElse ?a)

(conditional ?a)))

Conditional activities are not uniform; however, if the same fluents hold prior
to two occurrences of a conditional activity, then the activity trees for the activity
are isomorphic. Figure 8 depicts three different activity trees, two of which are
isomorphic.

Iterated Activities The intended semantics of the Iterate process in DAML-
S makes no assumption about how many iterations are made, or when to termi-
nate. Within PSL, this corresponds to an activity in which there exist multiple
isomorphic subtrees; for example, the activity tree in Figure 9 contains three
subtrees that are isomorphic to the activity tree in Figure 6. Since different ac-
tivity trees may have different numbers of iterations of the subactivities, the
activity is not uniform. These considerations lead to the following translation
definition:

����
����

����

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

��
@

@
@

@
@

@
@

@
@@

�
��

@
@R

�
�

�
��

-

-
@

@
@
@R

o1

o2

o3

o4

o5

o6

. . .

Fig. 9. Example of an activity tree for an Iterate DAML-S activity.

(forall (?a)
(iff (Iterate ?a)

(forall (?occ)

14

(implies (occurrence_of ?occ ?a)
(and (repetitive ?occ)

(multiple_outcome ?occ)))))

A RepeatUntil process in DAML-S executes until some state condition be-
comes true (see Figure 10). Because of this dependence on state, a RepeatUntil
process is equivalent to an Iterate process which is conditional:

����
����

����
����

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

��
@

@
@

@
@

@
@

@
@@

�
��

@
@R

�
�

�
��

-

-
@

@
@
@R

�
��

@
@R

o1

o2

o3

o4

o5

o6

o7

o8

.

Fig. 10. Example of activity trees for a RepeatUntil DAML-S activity.

(forall (?a)
(iff (RepeatUntil ?a)

(and (conditional ?a)
(forall (?occ)

(implies (occurrence_of ?occ ?a)
(and (repetitive ?occ)

(multiple_outcome ?occ)))))))

Thus, there will exist multiple nonisomorphic activity trees (corresponding
to occurrences of the activity with different iterations), and activity trees that
agree on state will be isomorphic.

15

5 Grammars for Process Descriptions

PSL makes a distinction between the ontology (which is the lexicon together
with an axiomatization of their intended meaning) and the process descriptions
that are exchanged between software applications. For each class in the ontology,
PSL specifies a grammar that is satisfied by process descriptions of the activities
or activity occurrences in that class.

For example, if two software applications both used an ontology for algebraic
fields, they would not exchange new definitions, but rather they would exchange
sentences that expressed properties of elements in their models. For algebraic
fields, such sentences are equivalent to polynomials. Similarly, the software ap-
plications that use PSL do not exchange arbitrary sentences, such as new axioms
or even conservative definitions, in the language of their ontology. Instead, they
exchange process descriptions, which are sentences that are satisfied by particu-
lar activities, occurrences, states, or other objects.

DAML-S specifications are in fact grammars for service specifications. Us-
ing the translation definitions proposed in the previous section, we can use the
grammars associated with the classes in the PSL Ontology to characterize the
correctness and completeness of the DAML-S specification for the corresponding
DAML-S constructs.

There are several classes within the DAML-S Ontology that are classes of
sentences rather than classes of activities, activity occurrences, or fluents. In
particular, DAML-S has two classes of conditions, ConditionalEffects and Un-
conditionalEffects. Within the PSL Ontology, this distinction is captured by the
classes of context free and markov effects activities. If one considers the PSL
process description grammars for a context free activity, conditions appear as
a class of formulae, but they are not a class in the ontology. Similarly com-
ments apply to conditional activities. For example, in the process description for
withdraw in the Appendix, the condition is the formula

(and (prior (balance ?account ?Balance) (root_occ ?occ))
(greaterEq ?Balance ?amount))

6 Summary

Within the increasingly complex environments of enterprise integration, elec-
tronic commerce, and the Semantic Web, where process models are maintained
in different software applications, standards for the exchange of this information
must address not only the syntax but also the semantics of process concepts.

DAML-S is an attempt to support semantic web services within the frame-
work of the DARPA Agent MArkup Language. However, the intended semantics
of the concepts in DAML-S cannot be axiomatized within the Ontology Web Lan-
guage, and the DAML-S ontology itself combines object level classes of concepts
together with metalevel classes of sentences.

The PSL Ontology draws upon well-known mathematical tools and tech-
niques to provide a robust semantic foundation for the representation of process

16

information. This foundation includes first-order theories for concepts together
with complete characterizations of the satisfiability and axiomatizability of the
models of these theories. The PSL Ontology also provides a justification of the
taxonomy of activities by classifying the models with respect to invariants. Fi-
nally, process descriptions are formally characterized as syntactic classes of sen-
tences that are satisfied elements of the models.

The translation definitions presented in this paper are the first step towards
laying firm logical foundations for semantic web services specified in DAML-S.
Through these definitions, DAML-S can be given a sound and complete axiom-
atization and ontological distinctions can be clarified.

References

1. Business Process Execution Language for Web Services, Version 1.0
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

2. Gruninger, M. (2003) A Guide to the Ontology of the Process Specification
Language”, in Handbook on Ontologies in Information Systems, R. Studer
and S. Staab (eds.). Springer-Verlag.

3. McIlraith, S., Son, T.C. and Zeng, H. (2001) Semantic Web Services,
IEEE Intelligent Systems, Special Issue on the Semantic Web. 16:46–53,
March/April, 2001.

4. Menzel, C. and Gruninger, M. (2001) A formal foundation for process mod-
eling, Second International Conference on Formal Ontologies in Informa-
tion Systems, Welty and Smith (eds), 256-269.

5. Schlenoff, C., Gruninger, M., Ciocoiu, M., (1999) The Essence of the Process
Specification Language, Transactions of the Society for Computer Simula-
tion vol.16 no.4 (December 1999) pages 204-216.

Appendix: Examples of Process Descriptions

To buy a product, pay a fee to the broker and the cost of the product to the seller,
performing these steps in parallel.

The PSL process description for buy product is:

(forall (?x ?y ?z) (subactivity (transfer ?x ?y ?z) (buy_product ?y)))
(forall (?x ?y ?z) (subactivity (withdraw ?x ?y) (transfer ?x ?y ?z)))
(forall (?x ?y ?z) (subactivity (deposit ?x ?z) (transfer ?x ?y ?z)))

(forall (?occ ?Buyer)
(implies (occurrence_of ?occ (buy_product ?Buyer))

(exists (?occ1 ?occ2 ?Fee ?Cost ?broker ?Seller)
(and (occurrence_of (transfer ?Fee ?Buyer ?Broker))

(occurrence_of (transfer ?Cost ?Buyer ?Seller))
(subactivity_occurrence ?occ1 ?occ)
(subactivity_occurrence ?occ2 ?occ)))))

17

To transfer money from Account1 to Account2, withdraw some amount from
Account1 and deposit the amount in Account2.

The PSL process description for transfer is:

(forall (?occ)
(implies (occurrence_of ?occ (transfer ?Amount ?Account1 ?Account2))

(exists (?occ1 ?occ2 ?occ3)
(and (occurrence_of ?occ1 (withdraw ?Amount ?Account1))

(occurrence_of ?occ2 (deposit ?Amount ?Account2))
(subactivity_occurrence ?occ1 ?occ)
(subactivity_occurrence ?occ2 ?occ)
(leaf_occ ?occ3 ?occ1)
(min_precedes ?occ3 (root_occ ?occ2))))))

To withdraw money from an account, if the amount is greater than the bal-
ance, then change the account balance, otherwise notify the account that there
are insufficient funds available.

Suppose

(forall (?x ?y ?z) (activity (change_balance ?x ?y ?z)))

(subactivity (change_balance ?Account ?Balance1 ?Balance2)
(deposit ?Amount ?Account))

(subactivity (change_balance ?Account ?Balance1 ?Balance2)
(withdraw ?Amount ?Account))

(subactivity (notify ?Account)
(withdraw ?Amount ?Account))

In this case, deposit and withdraw are conditional activities, with the fol-
lowing PSL process descriptions:

(forall (?occ)
(and (implies (and (occurrence_of ?occ (withdraw ?Amount ?Account))

(prior (balance ?account ?Balance) (root_occ ?occ))
(greaterEq ?Balance ?amount))

(exists (?occ1)
(and (occurrence_of ?occ1 (change_balance ?account ?Balance

(plus ?Balance ?Amount)))
(subactivity_occurrence ?occ1 ?occ))))

(implies (and (occurrence_of ?occ (withdraw ?Amount ?Account))
(prior (balance ?account ?Balance) (root_occ ?occ))
(lesser ?Balance ?amount))

(exists (?occ2)
(and (occurrence_of ?occ2 (notify ?Account))

(subactivity_occurrence ?occ2 ?occ)))))

18

The effects of change balance are:

(forall (?occ)
(implies (and (occurrence_of ?occ (change_balance ?Account ?Amount1 ?Amount2))

(leaf_occ ?occ1 ?occ))
(and (holds (balance ?Account ?Amount2))

(not (holds (balance ?Account ?Amount1))))))

