
Keywords: simulation, standards, machine shop
operations

Abstract

 In most cases, the effort required to develop a
meaningful simulation for a small machine shop exceeds
the resources available. Machine shops typically do not
have staff with appropriate technical qualifications
required to develop custom simulations of their
operations.

Furthermore, simulators are not designed to use
traditional shop data in its native format, so models and
data import routines usually must be developed from
scratch. If simulation software vendors were to try to
develop generic job simulation models, they are still faced
with the problem that there are no standard formats for
much of the data required to run the models. Thus, if
someone wanted to input a specific shop’s data into one
of these hypothetical simulators, custom data translators
would still need to be developed at possibly considerable
expense.
 This paper provides an overview of work currently
underway at the National Institute of Standards and
Technology (NIST) to develop neutral standard data
interfaces for machine shop simulation that are being
developed to support the simulation industry and
manufacturing users.

1 Introduction

 Standard interfaces could help reduce the costs
associated with simulation model construction and data
exchange between simulation and other software
applications -- and thus make simulation technology more
affordable and accessible to a wide range of potential
industrial users. Currently, machine shops do not typically
use simulation technology because of various difficulties
and obstacles associated with model development and
data translation. Machine shops typically do not have staff
with the appropriate technical qualifications required to

develop custom simulations of their operations or custom
translators to import their data from other software
applications. If in-house staff or external consultants are
available, shop management is often unwilling to invest
the time, effort, and funding required for simulation
modeling activities.

A neutral data interface specification for simulating machine shop operations

Y. Tina Lee
Charles R. McLean

Manufacturing Systems Integration Division

National Institute of Standards and Technology
Gaithersburg, MD 20899-8260 U.S.A.

 Email: leet@cme.nist.gov Phone: (301) 975-3550 Fax: (301) 258-9749
Email: mclean@cme.nist.gov Phone: (301) 975-3511 Fax: (301) 258-9749

 NIST is working with a number of industrial partners
and researchers to develop neutral formats for machine
shop data to facilitate simulation and modeling activities.
A machine shop information model, as a neutral interface
format, has been under development to support both
NIST’s System Integration of Manufacturing Application
(SIMA) program and the Software Engineering Institute’s
(SEI) Technology Insertion Demonstration and
Evaluation (TIDE) Program. SIMA supports NIST
projects in applying information technologies and
standards-based approaches to manufacturing software
integration problems (Carlisle and Fowler 2001). The
TIDE Program is sponsored by the Department of
Defense and SEI; it is currently engaged in a number of
other projects with various small manufacturers in the
Pittsburgh, Pennsylvania area. The technical work is
being carried out as a collaboration between NIST, SEI,
Carnegie Mellon University, Duquesne University, the
iTAC Corporation, and the Kurt J. Lesker Company
(KJLC).
 KJLC is an international manufacturer and distributor
of vacuum products and systems to the research and
industrial vacuum markets. KJLC manufactures complete,
automatically controlled vacuum systems with special
emphasis on custom-designed, thin film deposition
systems for research in alloys, semiconductors,
superconductors, optical and opto-electronics. A machine
shop is contained within the KJLC manufacturing facility.
KJLC’s machine shop operation has been used to help
define the requirements for simulation modeling and data
interface specification activities described in this paper.
Their facility will also be used as a pilot site for testing
and evaluation of the simulation models, neutral data
interfaces, and other software developed under this TIDE
project. For more information on KJLC, see
<www.lesker.com>.

 The machine shop information model was developed
with two goals in mind: a) support for the integration of
software applications at a pilot facility -- KJLC’s machine
shop, and b) promotion as a standard data interface for
manufacturing simulators and possibly for other software
applications. The information model is continuing to
evolve based on experience and feedback from KJLC’s
implementations and others involved in this effort.
 The objective of the information modeling effort is to
develop a standardized, computer-interpretable
representation that allows for exchange of information in
a machine shop environment. The information model,
when completed, must satisfy the following needs:
support data requirements for the entire manufacturing
life cycle, enable data exchange between simulation and
other manufacturing software for machine shops, provide
for the construction of machine shop simulators, and
support testing and evaluation of machine shops’
manufacturing software. Data structures contained within
the information model include organizations, calendars,
resources, parts, process plans, schedules, and work
orders for machine shops.
 An information model provides a sharable, stable,
and organized representation of information in a selected
domain area. The Integrated Computer Aided
Manufacturing (ICAM) Definition Language 1 Extended
(IDEF1X), EXPRESS, Unified Modeling Language
(UML), and Extensible Markup Language (XML) are
most often used by the manufacturing enterprises for
information modeling. IDEF1X is a formal graphical
language for relational data modeling, developed by the
U. S. Air Force (Appleton 1985). EXPRESS (ISO 10303-
11 1994) was designed to meet the needs of the STandard
for the Exchange of Product model data, commonly called
STEP (ISO 10303-1 1994), and it has been used in a
variety of other “large-scale” modeling applications.
UML is a graphic representation for artifacts in software
systems, and is also useful for database design (OMG
2003). XML is a format for structured documents and it
helps make possible information exchange in a globally
distributed computing environment (W3C 2000).

2 Standard interfaces

This section describes our approach to developing
standard data interfaces that support the machine shop
manufacturing simulation. We have proposed an
architecture for a generic data-driven machine shop
simulator (McLean et al. 2002), and have been
constructing a prototype simulator based on the
architecture using commercial off-the-shelf software. The
architecture for the generic machine shop simulator is
divided into the following component elements: a neutral
shop data file, an XML data processor, a system
supervisor and reporting module, a machine shop
emulator, a discrete event simulator, and a user interface
system. The machine shop information model is a key

factor in effectively and efficiently integrating the generic
machine shop simulator.
 The information model will eventually be formulated
into a schema using the XML Schema language (van der
Vlist 2002). The information model/XML schema serves
as a neutral data format for representing and exchanging
machine shop data. With the neutral data format, machine
shop data can be represented in working forms, in
database tables, or in XML instance documents. The
working form is a structured way of storing data in main
memory. The database is designed to map the information
model/XML schema to tables in the database. Figure 1
depicts the role of the standard interfaces. The XML
parsers, “to/from Database Management System (DBMS)
translators,” and “to/from XML translators” are custom-
built software programs. XML parsers convert XML
schema’s data elements to structural in-memory
presentations, such as C++ data structures. Through the
use of the neutral data format, “to/from DBMS
translators” and “to/from XML translators” allow data to
be converted among a user’s data formats, database
structures, and XML document formats.
 To facilitate an implementation of the machine shop
information model, two translators are being developed at
NIST. One converts an XML instance document to an
Access database; the other converts a database back to
XML. XML data structures, which are parsed from the
XML Schemas, are used as intermediate representation.
A graphical user interface (GUI) system will also be
generated to execute various functions, such as import,
export, and translator execution.

3 Concept for the information model

 In this section, we introduce the concept of the shop
information model from the user perspective. Our primary
objective was to develop a structure for exchanging shop
data between various manufacturing software
applications, including simulation. The idea was to use
the same data structures for managing actual production
operations and simulating the machine shop. The rationale
was that if one structure can serve both purposes, the need
for translation and abstraction of the real data would be
minimized when simulations are constructed. The
mapping of real world data into simulation abstractions is
not, for the most part, addressed in the current
information model.
 We also recognized that maintaining data integrity
and minimizing the duplication of data were important
requirements. For this reason, each unique piece of
information appears in only one place in the model.
Cross-reference links are used to avoid the creation of
redundant copies of data.
 The machine shop information model contains
twenty major elements. Each of the major data elements
are italicized in the discussion that follows. The data
elements are called: Organizations, Calendars,

Resources, Skill-definitions, Setup-definitions, Operation-
definitions, Maintenance-definitions, Layout, Parts, Bills-
of-materials, Inventory, Procurements, Process-plans,
Work, Schedules, Revisions, Time-sheets, Probability-
distributions, References, and Units-of-measurement.
Figure 2 illustrates some of the major elements of the
conceptual information model and their relationships to
each other. Due to space limitations, the entire model is
not shown or discussed in detail. For more detailed
information on the model, see (McLean et al. 2003). The
remainder of this section discusses the data elements and
their significance.
 Perhaps a good place to start the discussion of the
information model is with the customer. Machine shops
are businesses. They typically produce machined parts for
either internal or external customers. Data elements are
needed to maintain information on customers. The types
of organizational information that is needed about
customers is very similar to the data needed about
suppliers that provide materials to the shop. The same
types of organizational data are also needed about the
machine shop itself. For this reason, an Organizations
element was created to maintain organizational and
contact information on the shop, its customers, and its
suppliers.
 Organizations can be thought of as both a phone
book and an organization chart. The element provides
sub-elements for identifying departments, their
relationships to each other, individuals within
departments, and their contact information. Various other
types of information needs to be cross-referenced to
organizations and contacts within structure, e.g. customer
orders, parts, and procurements to suppliers.
 The operation of the machine shop revolves around
the production of parts, i.e. the fabrication of parts from
raw materials such as metal or plastic. The raw materials
typically come in the form of blocks, bars, sheets,
forgings, or castings. These materials are themselves parts
that are procured from suppliers. The Parts data element
was created to maintain the broad range of information
that is needed about each part that is handled by the
machine shop. Part data includes an identifying part
number, name, description, size, weight, material
composition, unit-of-issue, cost, group technology
classification codes, and revision (change) data. Cross-
reference links are needed to the customers that buy the
parts from the shop and/or the suppliers that provide them
as raw materials. Links are also needed to other data
elements, documents, and files that are related to the
production of parts including: part specification
documents, geometric models, drawings, bills-of-
materials, and process plans.
 The Bills-of-materials element is basically a
collection of hierarchically-structured parts lists. It is used
to define the parts and subassemblies that make up higher
level part assemblies. A bill-of-materials identifies, by a
part number reference link, the component or

subassembly required at each level of assembly. The
quantity required for each part is also indicated. Cross-
references links are needed between parts that are
assemblies and their associated bill-of-materials.
 The Parts and Bills-of-materials elements establish
the basic definition of parts produced or used by the shop.
Another element, Inventory, is used to identify quantity of
part instances at each location within the facility.
Inventory data elements are provided for parts, tools,
fixtures, and materials. Materials are defined as various
types of stock that may be partially consumed in
production, e.g. sheets, bars, and rolls. Structures are
provided within inventory to keep track of various stock
levels (e.g. reorder point level) and the specific instances
of parts that are used in assemblies.
 The Procurements element identifies the internal and
external purchase orders that have been created to satisfy
order or part inventory requirements. Cross-reference
links are defined to Parts to identify the specific parts that
are being procured and to Work to indicate which work
items they will be used to satisfy.
 The Work data element is used to specify a
hierarchical collection of work items that define orders,
production and support activities within the shop. Support
activities include maintenance, inventory picking, and
fixture/tool preparation. Work is broken down
hierarchically into orders, jobs, and tasks.
 Orders may be either customer orders for products or
internally-generated orders to satisfy part requirements
within the company, e.g. maintenance of inventory levels
of stock items sold through a catalog. Orders contain both
definition and status information. Definition information
specifies who the order is for (i.e. customer cross-
references), its relative priority, critical due dates, what
output products are required (a list of order items, i.e. part
references and quantities required), special resource
requirements, precedence relationships on the processing
of order items, and a summary of estimated and actual
costs. Order items are also cross-referenced to jobs and
tasks that decompose the orders into individual process
steps performed at workstations within the shop. Status
information includes data about scheduled and actual
progress towards completing the order
 Jobs typically define complex production work items
that involve activities at multiple stations and ultimately
produce parts. Tasks are lower level work items that are
typically performed at a single workstation or area within
the shop.
 The Process-plans element contains the process
specifications that describe how production and support
work is to be performed in the shop. Major elements
contained within Process-plans include routing sheets,
operation sheets, and equipment programs. Routing and
operation sheets are the plans used to define job and task
level work items, respectively, in the work hierarchy.
These process plans define the steps, precedence
constraints between steps, and resources required to

produce parts and perform support activities. Precedence
constraints defined in a process plan are used to establish
precedence relationships between jobs and tasks.
Equipment program elements establish cross reference
links to files that contain computer programs that are used
to run machine tools and other programmable equipment
that process specific parts. Each part in the Parts element
contains cross-reference links to the process plans that
define how to make that part. Jobs and tasks contain links
back to the process plans that defined them.
 The Resources element is used to define production
and support resources that may be assigned to jobs or
tasks in the shop, their status, and scheduled assignments
to specific work items. The resource types available in the
machine shop environment include: stations and
machines, cranes, employees, tool and tool sets, fixtures
and fixture sets.
 The Skill-definitions, Setup-definitions, Operations-
definitions, Maintenance-definitions, and Time-sheets
elements provide additional supporting information
associated with resources. Skill-definitions lists the skills
that an employee may possess and the levels of
proficiency associated with these skills. Skills are
referenced in employee resource requirements contained
in process plans. Setup-definitions typically specifies tool
or fixture setups on a machine. Tool setups are typically
the tools that are required in the tool magazine. Fixture
setups are work-holding devices mounted on the machine.
Setups may also apply to cranes or stations. Operation-
definitions specifies the types of operations that may be
performed at a particular station or group of stations
within the shop. Maintenance-definitions specifies
preventive or corrective maintenance to be done on
machines or other maintained resources. Time-sheets is
used to log individual employee’s work hours, leave
hours, overtime hours, etc.
 The Layout element defines the physical locations of
resource objects and part instances within the shop. It also
defines reference points, area boundaries, paths, etc. It
contains references to external files that are used to
further define resource and part objects using appropriate
graphics standards. Cross-references links are also
provided between layout objects and the actual resources
that they represent.
 Schedules and Calendars data elements are used to
deal with time. Schedules provides two views of the
planned assignment of work and resources. Work items
(orders, jobs, and tasks) are mapped to resources, and
conversely, resources are mapped to work items. The
planned time events associated with those mappings are
also identified, e.g. scheduled start times and end times.
Calendars identifies scheduled work days for the shop,
the shift schedules that are in effect for periods of time,
planned breaks, and holiday periods.
 The four remaining major data elements are
Revisions, References, Probability-distributions, and
Units-of-measurement. The Revisions element is used

repeatedly throughout many levels of the information
model. It provides a mechanism for identifying versions
of subsets of the data, revision dates, and the creator of
the data. The References element identifies external
digital files and paper documents that support and further
define the data elements contained within the shop data
structure. It provides a mechanism for linking to outside
files that conform to various other format specifications or
standards, e.g. STEP part design files. The Probability-
distributions element defines probability distributions that
are used to vary processing times, breakdown and repair
times, availability of resources, etc. Distributions may be
cross-referenced from elsewhere in the model, e.g.
equipment resources maintenance data. Units-of-
measurement specifies the units used in the file for
various quantities such as length, weight, currency, and
speed.

The next section provides a detailed illustration of a
small portion of the overall information model, and UML
and XML file structures.

4 Specification of information model

 An information model is a representation of concepts,
relationships, constraints, rules, and operations to specify
data semantics for a chosen domain of discourse. The
advantage of using an information model is that it can
provide shareable, stable, and organized structure of
information requirements for the domain context. An
information model serves as a medium for transferring
data among computer systems that have some degree of
compliance with this information model. For proprietary
data, implementation-specific arrangements can be made
when transferring those data (Lee 1999).
 In general, the contents of an information model
include a scope, a set of information requirements, and a
specification. Information requirements serve as the
foundation of the specification of the information model.
A thorough requirements analysis is a necessity. The
initial goal for the machine shop information model is to
support data transferring needed for KJLC’s machine
shop operations. This information model, ultimately, will
be promoted as a standard data interface to be used by
other machine shops. Thus, the completeness and
correctness of the information requirements and a
consensus on the data requirements from the industry are
also important issues.
 The specification of the information model defines
elements, attributes, constraints, and relationship between
elements for the domain context. The specification should
be laid out using some formal information modeling
language. An information modeling language provides a
formal syntax that allows users to unambiguously capture
data semantics and constraints. Three types of methods
that implement information models are currently used by
the manufacturing community:

• Data transfer via a working form, which is a

structured, in-memory representation of data. The
method uses a mechanism that accesses and changes
data sequentially without actually moving the data
around. All shared data are stored in memory.

• Data transfer via an exchange file, which is a file
with a predefined structure or format. This method
requires a neutral file format for storing the data. The
application systems read and write from files.

• Data transfer using a database management system.
This method uses a database management system
where information is mapped onto and retrieved from
databases.

 These implementation methods can be accomplished
through translators that are developed using programming
languages and database management systems. The
selection of an implementation method is heavily
dependent on the target environment where the
application system resides. While the relational database
is generally desirable for data transfer, the traditional file-
oriented systems are being used continually by many
manufacturing applications.
 A specification for the machine shop information
model has been developed based on the information
model concept described in section 3. Figure 3 shows the
top level of the model. The shop-data element is
represented by a type, an identifier, and a number.
Optional elements include: name, description, reference-
keys, revisions, units-of-measurement, organizations,
calendars, resources, skill-definitions, setup-definitions,
operation-definitions, maintenance-definitions, layout,
parts, bills-of-materials, inventory, procurements,
process-plans, work, schedules, time-sheets, references,
and probability-distributions. Type is an attribute of shop-
data and is an enumeration to describe types about shop-
data. Identifier is a key to uniquely identify the object
internally within the system, and it is generated
automatically by the system when the object is created.
Number is also a unique key for identifying the object
either when taken alone or possibly together with the
object type, and the uniqueness is to the user or the user’s
organization. Type, identifier and number are required
attributes. Name is used to identify the object by the user
or user’s organization. It is provided for readability sake.
Description is used to describe the nature of the subject.
Reference-keys refers to reference documents or files that
are stored external to the model. When a data element’s
name suffixes with “-key” or “-keys”, these data elements
serve as pointers to the model to avoid redefining the
same set of information. All other attributes, such as
organizations, calendars, resources, etc., are major
elements of the model that were introduced in section 3.
 The machine shop information model specification is
documented using both UML and XML structures. XML
is chosen to support web users while UML’s standard
graphical notations provide visual communications. UML
is a graphical representation; the language is for

specifying, visualizing, constructing, and documenting,
rather than processing. XML is a format for structured
documents, thus XML documents are decodable.
 The current version of the specification includes
XML documents that are well-formed, but may or may
not be validated. Data should be validated before being
imported to a legacy system. An XML Schema is a
specification of the elements, attributes, and structures; it
is not only useful for documentation, but also for
validation or processing automation. Validation is the
most common use for schema in the XML environment.
The XML documents specification is now being extended
to a schema using the World Wide Web Consortium
(W3C) XML Schema, an XML schema language.
 UML provides several modeling types, from
functional requirements and activity analysis to class
structures and component description. The modeling type
used to map to the XML documents is the UML class
diagram. A UML class diagram can be constructed to
visually represent the structural and behavioural features.
Since the behavioural feature is not relevant to the XML
specification, that feature is omitted here (Carlson 2001).
 The complete specification is not given here due to
its size. Instead a sample data element specification is
described. The data element of orders is chosen for
illustration in this section. Orders is a subgroup of work
and consists of a set of individual order data elements. It
specifies a collection of production work orders to be
processed within the shop. Each order contains the order
definition and/or order status section. The order definition
contains attributes of the order including a list of order
items, i.e. a listing of individual parts that make up a
particular order. The order status describes information
about scheduled and actual progress toward completing
the order. The same part may be listed in the order
multiple times in different order items if each instance has
unique attributes, e.g. different due dates.

4.1 UML modeling

 As mentioned before, the UML class diagram is one
representation for the specification of the information
model. A number of software tools are available for
generating UML diagrams. The UML class diagrams
introduced here have been generated using Microsoft
Visio 2000. A UML class diagram can be constructed to
graphically represent the classes, attributes, and
relationships. A UML class is the abstraction of a concept
in the domain of discourse; it is defined by a set of
attributes. An attribute is an additional piece of
information associated with a UML class. Each attribute
defines its type (such as string, integer, date, or user
defined data type), relationships, and optionally specifies
its default value. A special type of class, named
DataType, is used to specify enumeration items.
 Relationships between classes are shown with the
connecting line; the role and cardinality relationship may

be presented along the relationship line. The role
describes how the related class is used. There exist
cardinality relationships between a class and its attributes,
and between classes. The cardinality relationship specifies
how many specific instances of an element could be
related to another element. The cardinality relationship
may be “one” to “zero or one”, “one” to “zero or more”,
“one” to “one or more”, or exactly “n” occurrences, and is
presented in the figure 4 as 0..1, 0..*, 1..*, n, respectively.
The cardinality relationship used for attributes is enclosed
by [].
 The UML information model for the orders element
is shown in figure 4. The orders element has the attributes
of type (which is a string), an identifier (which is an “int”
or integer value), a number (which is a string), an optional
name (which is a string), an optional description (which is
a string), and an optional reference-keys and revisions
(they are user defined data types). Figure 4 illustrates the
cardinality relationships among orders, order, order-
definition, and order-status. An orders element contains
some order elements. Each order is defined by order-
definition and has an order-status. Orders and order has
“one” to “one or more” relationship, i.e. there may exist
one or many order instances for an orders instance.
Similarly, there may exist zero or one order-definition
instance and zero or one order-status instance for an
order instance. Each order-definition instance is defined
by one customers instance, one due-dates instance, and
zero or one of priority-rating, order-items, precedent-
constraints, resources-required, and cost-summary
instances.

4.2 XML specification

XML supports the development of structured, hierarchical
data entities that contain a high level of semantic content,
that is both human and machine interpretable. There are
several supporting standards from W3C that make
working with XML easier. These include Document
Object Management (DOM) for manipulating XML
documents, XML Schema for defining the format of
XML documents, and Extensible Style-sheet Language
(XSL) for translating XML documents to other formats,
see <www.w3.org>. There also exist commercial off-
the-shelf software applications to implement creation,
parsing, interpreting, and displaying of XML documents.
The current version of the XML specification of the
information model has been developed using Microsoft
XML Notepad.
 An XML document is a collection of parsed and
unparsed pieces. An element is one of the basic type of
nodes in the tree represented by a XML document. A
well-formed document has one unique root element that
contains all other elements. Elements follow one another,
or appear inside one another, but may not overlap. All
elements must have a start-tag and an end-tag that
surround their contents. An element begins with <name-

of-element> (that is a start-tag) and ends with </name-of-
element> (that is an end-tag). XML is case-sensitive. The
contents of each element may include other elements. An
XML element may be defined by a set of attributes and
child-elements. (Child-elements are treated as attributes in
the UML diagram.) Attributes and child-elements are
additional information associated with the element.
Attributes are presented in the start-tag, in the form:
 <name-of-element name-of-attribute=”value”>.
The same attribute can appear inside the start-tag once
only. However, the same child-element may appear in the
element more than once if it carries different instances.
Attributes are unordered while child-elements are
presented in order. When an element has no content
between the start-tag and end-tag or omits the end-tag and
terminates the start-tag with “/>”, the element is an empty
element. An empty element may contain attributes,
however.
 The XML structure for the orders element is shown
below:

<orders type="" identifier="" number="">

<name />
<description />
<reference-keys />
<revisions />
<order type="" identifier="" number="">

<name />
<description />
<reference-keys />
<revisions />
<order-definition>

<customers />
<priority-rating />
<due-dates />
<order-items/>
<precedent-constraints />
<resources-required />
<cost-summary />

</order-definition>
<order-status>

<work-scheduled-progress />
<work-actual-progress />

</order-status>
</order>

</orders>

In the above structure, the element of orders is
defined by the attributes of type, identifier, and number,
and the child-elements of name, description, reference-
keys, revisions, and order. Order is further defined by the
attributes of type, identifier, and number, and the child-
elements of name, description, reference-keys, revisions,
order-definition, and order-status. All attribute values are
undefined in this case. Child elements are empty
elements. Data types, cardinality relationships,
constraints, default values, and enumerations are not

included in this sample XML document. They will be
defined in the XML schema that is currently under
development.

5 Implementation

 The machine shop information model is used or
applied by several newly developed prototype systems for
representing or exchanging machine shop data. Prototypes
that have been built to date include:
 Machine Shop Database Model – A database model
containing a set of tables that are mapped onto the
machine shop information model has been generated (Lee
and Luo 2003). The objectives of the database
development are to demonstrate the feasibility of the
information model, to develop a pilot database system and
then to migrate to a large database management system,
and to support the integration of manufacturing
applications and simulations used in machine shops.

Shop Data Editor – A graphical user interface was
developed using various controls within Visual Basic™ to
simplify data entry and population of the internal object
structure and XML-based data exchange file.
Development of the data editor is continuing to support
the input of data for the entire machine shop information
model.

Machine Shop Emulator – Various prototypes were
created to validate that the architectural concepts could be
implemented in Arena™, a discrete event simulation
software marketed by Rockwell Automation. The
prototypes were used to determine that resources could be
dynamically-created based on externally-defined data,
custom state definitions could be applied to resources,
resources could be pushed through state changes
programmatically from an external module, statistics
could be properly collected on generic dynamically-
created resources, and routing of work items could be
externally defined and controlled. Some of the logic
required for the Machine Shop Emulator had been
validated in a previous project using Promodel™, another
discrete event simulation software.

XML data processor – A prototype was developed to
import and export scheduling data using Microsoft’s
XML Document Object Model, a standard library of
application programming interfaces for accessing XML
documents (Microsoft 2003). It also transferred data into
internal Visual Basic™ object structures. The prototype
verified the structure of software that processes the XML
files.

6 Conclusions and future work

 This paper described the work being carried out by
NIST in developing a neutral model and data exchange
format for machine shop data. The objective of the
information modeling effort was to develop a
standardized, computer-interpretable representation that

allows for the efficient storage and exchange of
manufacturing life cycle data in a machine shop
environment.
 The information model will continue to evolve based
on the experience and feedback from others involved in
this effort. The model is now being transformed into a
schema using an XML schema language. There are also
plans to expand the model to include assembly line,
supply chain, and other domain areas. A database
implementation using Microsoft Access has been
developed. The information model will be proposed as a
candidate standard to be considered by a formal standards
development organization.
 The current model addresses the exchange of real
world data between simulation and other manufacturing
software applications. An extension of the information
model and exchange file format is needed to support the
simulation abstraction process. This model would be used
to maintain data regarding the mapping of real world
objects into their simulated representation. For example,
as part of the abstraction process data values may be
approximated, different colors may be substituted for real
objects, shapes and sizes may be changed, and
probabilistic distributions may be substituted for actual
arrivals and other time-dependent events.
 There are also experimental development activities
underway to test the viability of the model with real world
applications. A generic manufacturing simulator is being
developed at NIST for the TIDE Program (McLean et al.
2002). The model is also being used in the TIDE Program
to integrate a manufacturing execution system with a real-
time adaptive scheduler, and the manufacturing simulator.
An aerospace manufacturer is also working on a prototype
simulation based on the specification.

Acknowledgments and disclaimer

This project is funded by NIST's SIMA Program and the
SEI TIDE Program. SIMA supports NIST projects
applying information technologies and standards-based
approaches to manufacturing software integration
problems. No approval or endorsement of any commercial
product by the National Institute of Standards and
Technology is intended or implied. The work described
was funded by the United States Government and is not
subject to copyright.

Database
Tables/Objects

Machine Shop
Information

Model /
XML Schema

Working Forms,
e.g.

C++ Structures

XML
Parsers

To/From DBMS
Translators

To/From XML
Translators

XML
Instance

Documents

Machine
Shop

Simulato
r

I/O

Machine
Shop
Editor

I/O

Figure 1. Concept for the standard data interfaces.

customers
inventory machine

programs

suppliers

procurements

organizations

parts

work

specify
produced

by

bills-of-
materials

routing
sheets

purchase

process
plans

production
process

defined by

operation
sheets

orders

jobs

tasks

consist

consist

high-level
production
processes
defined by

store

schedules

resources

provide
requirements

assemblied
by

supply

assign

identify decompose

machine
control

defined by

defined
by

defined
by

required
by

have

may result
specification
provided by

layout

calendars

stations

machines

employees

setup
definitions

skill
definitions

locate

may
have

operation
definitions

may have

.....

place

receive

defined
by

use

has

may
include

ability
defined by

machine
setups

defined by

employ

maintenance
definitions

maintenance
requirements

defined by

station
operations
defined by

time sheets

maintain

activity
defined

by

Figure 2. Concept for the machine shop information model.

maintenance-definitions

calendars

setup-definitions

-type[0..1]
-identifier[1]
-number[1]
-name[0..1]
-description[0..1]
-REFERENCE-KEYS[0..1]
-REVISIONS[0..1]
-UNITS-OF-MEASUREMENT[0..1]

shop-data layout

bills-of-materials

operation-definitions

resources

skill-definitions

partsinventory

process-plans

work

time-sheets

organizations

references

probability-distributions

procurements

0..1

0..1

0..1

10..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

1

0..1

schedules

0..1

Figure 3. Top level of the machine shop information model.

-type[0..1] : String
-identifier[1] : int
-number[1] : String
-name[0..1] : String
-description[0..1] : String
-REFERENCE-KEYS[0..1] : REFERENCE-KEYS
-REVISIONS[0..1] : REVISIONS

order

-CUSTOMERS[1] : CUSTOMERS
-priority-rating[0..1] : String
-DUE-DATES[1] : DUE-DATES
-ORDER-ITEMS[0..1] : ORDER-ITEMS
-PRECEDENT-CONSTRAINTS[0..1] : PRECEDENT-CONSTRAINTS
-RESOURCES-REQUIRED[0..1] : RESOURCES-REQUIRED
-COST-SUMMARY[0..1] : COST-SUMMARY

order-definition

0..1

-type[0..1] : String
-identifier[1] : int
-number[1] : String
-name[0..1] : String
-description[0..1] : String
-REFERENCE-KEYS[0..1] : REFERENCE-KEYS
-REVISIONS[0..1] : REVISIONS

orders

1

1..*

-WORK-SCHEDULED-PROGRESS[0..1] : WORK-SCHEDULED-PROGRESS
-WORK-ACTUAL-PROGRESS[0..1] : WORK-ACTUAL-PROGRESS

order-status

1

0..1

contains
defined by

has

Figure 4. UML representation of the orders element.

References

CARLISLE, M., and J. FOWLER. 2001. Systems
Integration for Manufacturing Applications Biennial
Report. Fiscal Years, NISTIR 6721. Gaithersburg,
Maryland: National Institute of Standards and
Technology.

CARLSON, D. 2001. Modeling XML Applications with
UML: Practical e-Business Applications (Addison-
Wesley).

D. Appleton Company, Inc. 1985. Integrated Information
Support System: Information Modeling Manual,
IDEF1-Extended (IDEF1X). Wright-Patterson Air
Force Base, Ohio.

ISO 10303-1. 1994. Part 1: Overview and Fundamental
Principles. Industrial Automation Systems and
Integration-Product Data Representation and
Exchange. Geneva, Switzerland: International
Organization for Standardization.

ISO 10303-11. 1994. Part 11: The EXPRESS Language
Reference Manual. Industrial Automation Systems
and Integration-Product Data Representation and
Exchange. Geneva, Switzerland: International
Organization for Standardization.

LEE, Y. T. 1999. Information Modeling: From Design To
Implementation. Proceedings of the Second World
Manufacturing Congress, ed. S. Nahavandi and M.
Saadat, pp. 315-321. Canada/Switzerland :
International Computer Science Conventions.

LEE, Y.T., and Y. LUO. 2003. A Database Design for the
Machine Shop Information Model. NISTIR 7077.

Gaithersburg, Maryland: National Institute of
Standards and Technology.

MCLEAN, C., A. JONES, T. LEE, and F. RIDDICK.
2002. An Architecture for a Generic Data-Driven
Machine Shop Simulator. Proceedings of the 2002
Winter Simulation Conference, ed. E. Yucesan, C.
Chen, J. L. Snowdon, and J. M. Charnes, pp. 1108-
1116. Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers.

MCLEAN, C., T. LEE, G. SHAO, F. RIDDICK, AND S.
LEONG. 2003. Shop Data Model And Interface
Specification. Draft NISTIR. Gaithersburg,
Maryland: National Institute of Standards and
Technology.

Microsoft Corporation.. 2003. Microsoft XML Core
Services (MSXML) 4.0 - DOM Developer’s Guide
[online]. Available online via
http://msdn.microsoft.com/library/default.asp?url=/li
brary/en-
us/xmlsdk/htm/dom_devguide_overview_2g1j.asp

Object Management Group (OMG). 2003. Unified
Modeling Language [online]. Available online via
http://www.omg.org/uml/

World Wide Web Consortium (W3C). 2000. Extensible
Markup Language (XML) 1.0 (second edition)
[online]. Available online via
http://www.w3.org/TR/REC-xml.html

VAN DER VLIST, E. 2002. XML Schema (O’Reilly&
Associates).

http://www.w3.org/TR/REC-xml.html

	Introduction
	Standard interfaces
	Concept for the information model
	Specification of information model
	UML modeling
	XML specification

	Implementation
	Conclusions and future work

