U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NISTIR 90-4341

Nationd PDES Testbed

Report Saries

NATIONAL

£

TESTBED

=
Trandating

Expressto SQL: A
User’s Guide

NIST

U.S. DEPARTMENT OF COMMERCE

National Institute of Standards and Technology

NISTIR 90-4341

Nationd PDES Testbed

\
NATIONAL

= p Trandating

Expressto SQL: A

e User’s Guide

KatherineC. Morris

U.S. DEPARTMENT OF

COMMERCE

Robert A. Mosbacher,

Secretary of Commerce

National Institute of

Standards and Technology

John W. Lyons, Director

May 8, 1990

NIST

Trandating Expressto SQL: A

, .
User’s Guide

LOOVENVIEBW ..ottt ettt e n e e sne e e e nee e 1

2.0 Mapping ExpressCongructsinto Rdational Database Tables........... 2

B 01 Y = o === S 2

211 TabDlE NAME......coiii e e 3

Table name for aNULL SUDLYPE......ccoooiiiiirercreeseeeeeeeee e 3

2.1.2 Entity-1D COlUMN ...t 3

2.1.3 Sharable ColUmN.........cooiiiee s 4

2.1.4 Inherited ATIDULES......ccoeeiceeeee e 4

2.1.5 Explicit Entity AttriDULES.cceeeceeeee e 4

22 ATIDULES ... e 5

2.2.1 Atribute COIUMNS.......coiviiieieecieee e 6

(D= = R)Y 0 PSPPSR 6

Optional atriDULES..........cccuiiiieiie et 7

UNiQUE atriDULES. ... s 7

2.2.2 AIDULE TADIES........eeee e 8

TaDIENAME.....ce s 8

I 0] 1 o] o 1S 8

ValUE COlUMN ...t 8

Aggregate Positioning ColUMNS..........ccocoviiieiin e 8

Nested Aggregate ODJECEScc.eeirieiirere s 9

Optional and Uniqueness CONCEPLS........ccverrereereereeirseesieeeeseesseenens 9

2.3 ENLLY VIBWS ..ottt sttt nnee s 9

G O B oA o] = T AR 10

L ENLItY dESCIIPLIONS ..ottt 10

3.2 Attribute desCriptioNS..........ccceivieieiierece e 10

3.2.1 Aggregate attribute desCriptions...........coceeereererresieenese e 11

3.3 Description of defined tyPES.ccvierieiierere s 12

4.0 Theprogram: fedex_Sql ..., 13

4.1 RUNNING the PrOgrameeiuie et 13

4.1.1 Generating the SQL schema definition statements............cc.cccceveenee. 13

(O 0 11010 1 1 - 13

4.1.2 Creating the database tables...........ccccoveviiie e 14

OULPUL FITES ... 14

4.2 Different versions of the program...........cccceeeeeceerieesesieeseeseseesee e s 14

Express to SQL: User’s Guide i May 1990

1.0 Overview

This document describes the procedure used by the fedex_sgl software to trandate
an Express schemainto the SQL statements which generate arelational database
schemafor storing STEP data. The program which loadsa STEP physical fileinto
the database is stepwf_sgl and is describe in a separate document [Nickerson90].
The program uses FED-X, an Express parser, which is documented in [Clark90].
The software has been developed as part of the National PDES Testbed effort and
is funded by the Computer Aided Logistics Support (CALS) project.

Three types of issues are involved in trandating Express into arelational database
schema: trangdlation of the semantic constructs of Expressinto the data definition
language of SQL, resolution of limitiation imposed by the database management
system, and development of adatadictionary. Thefirst two are discussed in section
2. Firdt, the constructs of the Express language are translated into relational con-
cepts. The application of this mapping to a particular Express schema, generates
the SQL data definition language which is the basis for the database.

Secondly issuesinvolving the particular database management system (DBMS) are
resolved. Inthiscase Oracle’'s SQL*Plusisbeing used, but the translation also con-
formsto the SQL standard specification as described in [ANSI86] unless otherwise
noted. The basic data types defined in Express are mapped into the data types of
the SQL*Plus. The names used by the Express schema need to be modified to be
acceptable to the DBMS. For example, they could be too long or the same as key
words in the SQL*Plus.

Section 3 discusses the data dictionary. The dictionary holdsinformation from the
conceptual specification which is not explicitly captured in the SQL schema. The
dictionary captures some of the constraints specified in the conceptual schema
which are not directly mapped into the database management system’ s facilities.
For instance, the Uniqueness Rule as defined by the Express language can often be
handled directly by the database management system; however, constraints such as
the minimum or maximum number of elementsin a set are not handled by most da-
tabase management systems.

Thedictionary captures descriptiveinformation provided by the conceptual schema
whichisalso not directly represented in the SQL definitions. For example, Express
schemas contain type definitions. Through these definitions semantic information
describing attributesisrelayed. For instance, thedatatype“weight_in_pounds’ can
be defined in an Express schema; auser isthen ableto associate more meaning with
an attribute described as having this data type, than if the type “rea” had been as-
signed to that attribute. However, SQL has no expression available which would
allow one to store the depth of thismeaning. Therefore, the information is stored
inadictionary.

Section 4 describes how to run the program fedex_sgl and how to use its output.

Express to SQL: User’s Guide Page 1 May 1990

2.0

2.1

Mapping Express Constructs into
Relational Database Tables

This section describes how the Express entity definitions are represented in rela
tional tables. The trandation of the entitiesis summarized asfollows. (1) Every
entity defined in the Express schema istranglated into a table or view in therela-
tional database. (2) An entity without subtypesis represented as a table. (3) An
entity which has subtypesis represented as a view of the tables which represent its
subtypes. Datacan be retrieved from these views, but not inserted into them. (4) If
an entity hasa*“ XORNULL” specified in the Express* Supertype of” statement, it
has both a table and a view associated with it. Datainserted into the table associ-
ated with the instances of the NULL subtype entity appearsin the view along with
the data from the other subtypes’ tables.

The attributes of an entity are represented either as columnsin the entity’ stable or
as another table. Aggregate attributes are represented as separate tables. The dic-
tionary table EXPRESSY SSATTRIBUTEDESC indicates how the attribute is rep-
resented.

Entity Tables

A primary table, called an entity table, is associated with each entity with no sub-
types and with each entity which has’ NULL’ asone of its subtypes. Thefollowing
template shows the structure of the entity tables. It isdescribed in the sections
which follow.

Table Name = Entity’s abbreviated Name

INHERITED EXPLICIT
D SHARABLE ATTRIBUTE ATTRIBUTE
COLUMNS COLUMNS

This mapping is based on the mapping used by the STEP physical file representa-
tion of an Express schema[Altemueller88]. Specifically, the decision to represent
only entities with no subtypesin tablesis based primarily on the fact that these are
the only entities which can be populated in a physical file. Furthermore, the order
of the columnsis based on the ordering of attributesin the physical file and the in-
heritance rules for attributes are applied in the same way. Theuse of ’AND’ and
"OR’ in the supertype declarations is also unaccounted for just asin the current
STEP physical file mapping.

Express to SQL: User’s Guide Page 2 May 1990

2.1.1

2111

2.1.2

Table Name

The table representing an entity is named after the entity. When the entity’ s name
istoo long, it isabbreviated. This mapping of the entity names and table namesis
found in the EXPRESSY SBNAMES table and also in afile generated by the
fedex_sgl program. The name of thisfileisSTABLE NAMES. txt by default. The
algorithm for generating the new namesis given below.

1. If the name is one of the key words reserved by the DBMS, the last character
ischanged to “#”.

If nameislessthan 20 characters, no abbreviation is needed.

3. Otherwise, thelast vowel or repeated character isremoved from the name until
the nameisless than 20 characters or al these characters have been removed.

4. If the nameis still not less than 20 characters, the last character of the longest
subword is dropped until the shortened nameis less than 20 characters. A sub-
word isaportion of theword which is separated by underscores or pound signs.

5. If the nameis till not less than 20 characters, the character “_” isused as the
name abbreviation. (Thusanumeric nameis generated for the table in the fol-
lowing step.)

6. Append auniquethreedigit number on the end of the abbreviation to guarantee
that the name is unique.

Table name for a NULL subtype

The name of the table representing an entity with NULL as one of its subtypesis
formed asfollows: (1) The entity isabbreviated as described above, (2) Thestring
“ NULL” isappended to the end of the abbreviated entity name. Thistableisin-
cluded in the view of that entity, which is described in section 2.3.

Entity-ID Column

Thefirst column of every entity tableis|D. It containsauniqueidentifier for every
instance of an entity. Thisidentifier isused as the primary key of the entity table;
and it islikely to be referenced in two situations outside of thistable. An entity
referenced by another entity as an attribute is represented by thisidentifier in that
attribute’ scolumn of theentity table. The EXPRESSY SSFRNKEY REFERENCES
table can be used to find out which tables reference other tables or, conversely, to
find out where atableis referenced. For an entity with aggregate attributes
(attributeswhosetypeisarray, bag, list or set), the same entity identifier isalso used
in the tables which contain the data for these attributes. Detail about aggregate
attribute tablesis given below in section 2.2.2.

Theidentifiers generated from the program stepwf_sgl, which loads datainto the ta-
bles, take the following form:

table_name!00000000
Table_name iS the name of the entity table, and 00000000 is a unique integer.

Express to SQL: User’s Guide Page 3 May 1990

2.1.3

2.1.4

2.1.5

Sharable Column

Every entity table containsacolumn called SHARABLE. Thiscolumniscurrently
used as an indicator of whether or not the entity instance can be used by more than
oneother entity instance. Thisiscurrently interpreted to mean whether theinstance
is embedded in another instance in the input STEP physical file.

In future versions of the database this could be used in checking uniqueness and
equality of entity instances. For example, the question of whether two points with
the same coordinates are the same point or two distinct instances of apoint isun-
clear. If the SHARABLE column is FAL SE, the points are definitively not the
same; however, if the columnis TRUE, the two points may be considered the same.
Furthermore, the field could be used as a reference counter to ascertain whether a
shared instance is to be deleted when areferencing instance is deleted.

Inherited Attributes

Thenext group of columnsto appear in an entity’ stabl e represent the non-aggregate
attributesinherited from the entity’ s supertype(s). The columnsare specified inthe
order of inheritance defined by the STEP physical file structure. The origin of the
attribute, the name of the entity in which the attribute is specified in the Express
schema, is found in the EXPRESSY S$SRC table.

Explicit Entity Attributes

Finally the non-aggregate attributes declared directly in the Express definition of
the entity are columns the table.

In the example that follows the portion of the Express schema shown produces the
SQL statement to create atable.

EXPRESS:

ENTITY geometry (* GEOM-1 *)
SUPERTYPE OF (point XOR
vector XOR
curve XOR
surface XOR
coordinate_system XOR
transformation XOR
axis_placement);
local_coordinate_system : OPTIONAL coordinate_system;
axis : OPTIONAL transformation;
END_ENTITY;

ENTITY vector (* GEOM-3 *)
SUPERTYPE OF (direction XOR
vector_with_magnitude)
SUBTYPE OF (geometry);
END_ENTITY;

ENTITY direction (* GEOM-14 *)
SUBTYPE OF (vector);
X . REAL;

Express to SQL: User’s Guide Page 4 May 1990

2.2

y . REAL;
z : OPTIONAL REAL;

END_ENTITY;
SQL:
CREATE TABLE DIRECTION (
ID CHAR(40) PRIMARY KEY,
SHARABLE INTEGER NOT NULL,
LOCAL_COORDINATE_SYSTEM CHAR(40) /* FOREIGN KEY */,
AXIS CHAR(40) /* FOREIGN KEY */,
X FLOAT NOT NULL,
Y FLOAT NOT NULL,
Z FLOAT
);
TABLE:
DIRECTION
SYSTEM ATTRIBUTES INHERITED ATTRIBUTES EXPLICIT ATTRIBUTES
local_coordinate axis
ID SHARABLE “system X y z
Attributes

The attributes of an entity are represented as either a column in the entity table or
asatable of their own. If the attribute is aggregate (an array, bag, list, or set), it
has its own table; otherwise, the attribute is represented as a column.

The EXPRESSY S$DEFINEDTY PES dictionary table describes the attributes of
the entity tables. Itincludesashort namefor the attribute and information about the
type of the attribute asit is given in the Express schema. The short nameisused in
assigning a name for the attribute in the database. The column EXPRESS TY PE
contains acode which can be used to determine whether the attribute i s represented
as acolumn in the entity table or as an aggregate table. Thevalid valuesfor this
field are AGGREGATE, ENTITY, SELECT, ENUMERATION, INTEGER,
REAL, BOOLEAN, LOGICAL, STRING, and NUMBER.

When thetypeisAGGREGATE or ENTITY, the value of the attribute is represent-
ed in another table. Inthe case of ENTITY the owning entity table has a column

for the attribute. The column contains akey (an entity identifier) into an entity ta-
ble. Inthe case of thetype AGGREGATE the owning entity table does not contain

Express to SQL: User’s Guide Page 5 May 1990

221

2211

acolumnfor thisattribute. Theentity identifier from the owning entity tableisused
to identify the aggregate dataitemsin the aggregate table as bel onging to that entity.

Attribute Columns

Non-aggregate attributes are represented as columns in the entity tables. The col-
umns have the same name as the attribute when this nameisless than 30 characters
(the maximum length allowed by SQL); otherwise, the nameis abbreviated by trun-
cating the attribute nameto 27 characters and appending aunique 2 digit integer to
the end. The same abbreviated name is used for attributes with the same name in
different tables.

Data Types

Oracle data types are assigned to the Express base types as follows for the purpose
of representing attributes as columnsin the database. The table shows all the base
types of Express as described in [Schenck90]. Note that the default length of an at-
tribute with type string is 240.

EXPRESS ORACLE

Integer INTEGER

Integer(n) NUMBER(N)

Real DECIMAL

Real(n) NUMBER(n)

Number NUMBER

String CHAR(240)

String(n) CHAR(n) for n <= 240, LONG for stringsup to 64 K
Boolean INTEGER

Logical INTEGER

The last two base types above, boolean and logical, are treated as specia cases of
enumerated types which are described below.

Attributes with the following complex Express types are al so represented as col-
umnsin the database. Below isamapping of these Express types to Oracle data

types.

Entity CHAR(40) FOREIGN KEY
Select CHAR(40)
Enumeration INTEGER

Enumeration type

Both enumeration and select types imply the specification of adomain for
attributes. An enumerated type specifies the possible values for the domain
explicitly; a select type specifies the possible values indirectly. The values of an
enumeration are stored in the dictionary table EXPRESSY SBENUMERATION.
This table assigns integer values to the values of an enumeration. The integer
values are what is then stored in the attribute columns. The dictionary tableis
consulted to see what the integer values represent. The reason for storing the
integer values, rather than the string values that they represent, is the fact that an
enumeration type implies an ordering on its possible values. In order to enforcethe
ordering the integer values are used.

Express to SQL: User’s Guide Page 6 May 1990

2212

2213

TYPE
b_spline_curve_form = ENUMERATION OF
(line_segment,
circular_arc,
elliptic_arc,
parabolic_arc,
hyperbolic_arc);
END_TYPE;

After thistypeis entered into the EXPRESSY SSENUMERATION table,
the table looks as follows:

TYPE_NAME ORDER_ID VALUE

B_SPLINE_CURVE_FORM 0 LINE_SEGMENT
B_SPLINE_CURVE_FORM CIRCULAR_ARC
B_SPLINE_CURVE_FORM ELLIPTIC_ARC
B_SPLINE_CURVE_FORM PARABOLIC_ARC
B_SPLINE_CURVE_FORM HYPERBOLIC_ARC

A WN P

Select type

With a select type the possible values of an attribute come from the group of the
possible values of several other types. When these types are entities, the values are
entity identifiers, asif the attribute’ s type had been an entity. From the entity iden-
tifiers generated by the database |oader it is possible to tell which table containsthe
entity instance information for agiven entry. Thefirst part of the entity identifier
isthe name of the entity table.

On the other hand, when the types are not entities, then the values must be of the
same base type as these defined types. In Expressit is possible to create an object
which does not have a single base type through the use of a select type; fedex_sql,
which implements this design, does not deal with this situation. We assumethat in
the majority of instances of select typesthe selection isamongst entity types; there-
fore, a select type attribute maps to the SQL type CHAR(40) just as do entity type
attributes. When the values of the selection are not entity identifiers, the field rep-
resenting these type attributesis still confined to CHAR(40). The choices of the se-
lection for a select type are stored in the dictionary table EXPRESSY S$SELECT.

Optional attributes

Each attribute column in the entity tablesis specified to be NOT NULL unlessthe
key word OPTIONAL is specified for that attribute in the Express definitions. The
DBMS then only allows rows which contain values for all non-optional attributes
to be inserted in the database.

Unique attributes

When an attribute is characterized as being unique in the Express definition, a
unique index is created on the column which represents that attribute in the entity
table. Theindices are named after the table to which they apply. Aninteger is ap-
pended to the end of the table name to create a unique name for the index. Every

Express to SQL: User’s Guide Page 7 May 1990

2.2.2

2221

2222

2223

2224

table has at least one index on the ID column. In thisway the Express uniqueness
construct is directly supported by the DBMS for non-aggregate attributes.

Attribute tables

Attributes with aggregate data types are represented astables, called agaregate ta-
bles, in the database. The valid Express aggregate data types for attributes are ar-
ray, bag, list, and set. Each item of the aggregate object is represented by arow in
the aggregate table.

Table Name

Aggregate tables' names are created by combining the abbreviated name of the
owning entity (which isthe name of the entity table) with the name of the attribute,
which it represents. The two names are separated by apound sign (#), and then the
new string is abbreviated using the same algorithm described above for naming en-
tity tables. The unabbreviated and abbreviated string pair are entered into the dic-
tionary table EXPRESSY SSNAMES.

ID Column

The first column in every aggregate tableiscaled ID. The valuesin this column
correspond to the valuesin the ID column of the owning entity’ stable. Whereas,
in the entity table thereisonly one entry for each unique entity identifier, inthista-
blethere are multiplerowsfor agiven entity identifier. The value of the D column
isthe same for all the items contained in a a single aggregate attribute.

Value Column

Thelast columnin all aggregate tablesiscalled VALUE. Thiscolumn containsthe
datafor theindividual dataitems of the aggregate object. For example, if the ag-
gregateisa“list of integer”, this column containsintegers; if the aggregateisa“ set
of cartesian points’, this column contains entity identifiers from the cartesian point
entity table.

Aggregate Positioning Columns

The second column in an aggregate table indicates the position of the individual
dataitem in the aggregate object. The name of this column is determined by the
type of the aggregate object. For example, if the object isan array, thiscolumn is
called SUBSCRIPT_1. The column name can be determined from thefollowing ta-
ble:

AGGREGATE TYPE COLUMN NAME
Array SUBSCRIPT n
Bag ELEMENT_ID_n
List POSITION_ID n
Set ELEMENT_ID_n

The ninthe column nameisaninteger, which isalways 1 for asimple, not nested,
aggregate attribute.

When the aggregate is alist, the following column is PREVIOUS ID _n.

Express to SQL: User’s Guide Page 8 May 1990

2225

2.2.2.6

2.3

Nested Aggregate Objects

If the aggregate attribute is nested, or multi-dimensional, more positioning columns
follow theinitial one. These columns are named in the same way asthe initial po-
sitioning column, as described above. The integer n in the column name indicates
the nesting level that this column represents. For example, for atwo-dimensional
array there are two positioning columns SUBSCRIPT _1 and SUBSCRIPT_2. The
first column contains the value of the first subscript of the array and the second col-
umn contains the values for the second subscript of the array. The datafor theitem
at position [1,2] of the array would have arow in the table which contains the fol-
lowing entry:

ID SUBSCRIPT_1 SUBSCRIPT_2 VALUE
entity-id 1 2 data item

Optional and Uniqueness Concepts

The Express concepts, optional and unique, are not directly supportable for
aggregate attributes by arelational database system under this mapping. The
information is stored in the dictionary tables EXPRESSY SFARRAY,,
EXPRESSY S$BAG, EXPRESSY S$LIST, and EXPRESSY S$SET.

With non-aggregate objects the Express key word UNIQUE is represented in SQL
by creating a unique index on an attribute. However, the translation of UNIQUE
with complex objectsinvolves comparing the objects element by element. Further-
more, equality isnot defined for aggregate objects; therefore, uniquenessfor nested
aggregate objectsis not enforceable.

In Express the key word OPTIONAL within aggregate attributes indicates that not
al the data elements of the attribute must be specified. Thisisdifferent than desig-
nating that the object is an optional attribute of the entity, which is modeled by the
non-use of the NOT NULL clause in the entity table definition.

Entity Views

Entities which have subtypes are represented as views of the entity tablesin the da-
tabase. Views serve astables for the purpose of retrieving data from the database,
but data can not be inserted in or deleted from the views directly. Entity viewsare
named using the algorithm given earlier for naming entity tables. Also aswith en-
tity tables the original and abbreviated name are entered into the EXPRESSY -
SENAMES table. The entity views contain an ID column and columns for al the
non-aggregate, explicit and inherited attributes which belong to the entity being
viewed. There are no views for the aggregate attributes.

Thedictionary table EXPRESSY S$CL A SSES showsthe class hierarchy and can be
used to see which entity tables areincluded in aview.

Express to SQL: User’s Guide Page 9 May 1990

3.0

3.1

3.2

Dictionary

Fourteen dictionary tables are used to store semantic information found in Express
schemas. Identical tables are established for each and every schema. The SQL
statements for creating these tables are found in the beginning of the main output
file of fedex_sgl. The dictionary tables summarized below are described in detail
in thein the document Tranglation of an Express Schema into SQL. Inthe database
the names of these tables are prefixed by "EXPRESSY S$" to indicate that they are
dictionary tables.

Four of thetablesinvolvethe handling of aggregate datatypes. Onetable maintains
information pertaining to subtype and supertyperelations. Another table storesthe
logical names of tables. Finally there are tables for representing the Express type
definitions and another for recording descriptions of entity attributesin the terms of
these definitions.

Entity descriptions
* NAMES: maps Express names to the names used by the database system

NAME SHORT_NAME

BOUNDARY LOCATION SHAPE ASPECT BNDRY LCTN_SHP SPCT 494
BNDRY LCTN SHP SPCT 494#REPRESENTATIONS BND_LCT SHP_SP_49#RP_509
BOUNDED CURVE BOUNDED CURVE

BOUNDED SURFACE BOUNDED_SURFACE

B_SPLINE CURVE B_SPLINE CURVE

B_SPLINE CURVE#CONTROL POINTS B_SPLN CRV#CNTR_PNTS 512
B_SPLINE CURVE#KNOT MULTIPLICITIES B_SPLN_CRV#KNT MLTPL_513
B_SPLINE_CURVE#KNOTS B_SPLINE_ CURVE#KNOTS
B_SPLINE CURVE#WEIGHTS B_SPLINE CURVE#WEIGHTS

» CLASSES: capturesthe class structure of the Express schema

SUBTYPE SUPERTYPE

BNDRY LCTN SHP SPCT 494 DMNSNLTY 0 SHP SPCT 495
BOUNDED CURVE CURVE

BOUNDED SURFACE SURFACE

B_SPLINE CURVE BOUNDED CURVE

B_SPLINE SURFACE BOUNDED_SURFACE

CURVE GEOMETRY

Attribute descriptions

The tables used to describe attributes are the following:

« ATTRIBUTEDESC: contains Express type information, whether the attribute
isoptional, unique, or sharable, and the name used to represent the attribute in
the database (See the attached table.)

Express to SQL: User’s Guide Page 10 May 1990

FRNKEYREFERENCES: maps attributes to the table which would represent

them
BASE_TABLE_NAME REFERENCING_TABLE_NAME REFERENCING_TABLE_COLUMN
B_SPLINE_CURVE UNSTRCT_GMTRY_SM_RP_536 DEFINITION
B _SPLINE CURVE UNSTR_GMTRY PRMTR RP 921 DEFINITION
B_SPLINE_CURVE UNSTR_GMTR DM 0_S RP 510 DEFINITION
B_SPLINE_CURVE UNSTRUCT_GMTRY_R_RP_SSB DEFINITION
B_SPLINE_CURVE TRIMMED_CURVE BASIS_CURVE
B_SPLINE_CURVE SWP_PRFL_NL#CRV_PRFL_949 VALUE
B_SPLINE_CURVE SURFACE_CURVE CURVE_l
B _SPLINE CURVE SIZ CHRCTRSTC_DMNSN 943 CENTER_OF SYMMETRY
B_SPLINE_CURVE RCTNGL_PRFL#CRV_PRFL_936 VALUE
B_SPLINE_CURVE RCTRCK_PRFL#CRV_PRFL_935 VALUE

B_SPLINE CURVE
B _SPLINE CURVE

POINT ON_CURVE
PCURVE

BASIS CURVE
BASIS_CURVE

B_SPLINE_CURVE OTHER SWEEP_PATH PATH
B_SPLINE CURVE OTHER SWEEP_PATH PROFILE
B _SPLINE CURVE N _GON PRFL#CRV_ PRFL 915 VALUE
B_SPLINE_CURVE OTHR_CLS_PRF#CRV_PRF_916 VALUE

B_SPLINE CURVE

INTERSECTION_CURVE

BASIS CURVE

* ATTRSRC: indicatesthe entity from which an attribute originated in the inher-
itance hierarchy

ENTITY_SHORT_NAME ATTRIBUTE_NAME COLUMN_NAME

GEOMETRY AXIS AXIS

GEOMETRY LOCAL_COORDINATE_ SYSTEM LOCAL_COORDINATE SYSTEM
B_SPLINE_CURVE DEGREE DEGREE

B_SPLINE_CURVE UPPER_INDEX_ ON_CONTROL_POINTS UPPER INDEX ON_CONTROL_POINTS
B SPLINE_CURVE KNOT MULTIPLICITIES KNOT MULTIPLICITIES
B_SPLINE_CURVE KNOTS KNOTS

B_SPLINE_CURVE SELF_INTERSECT SELF_INTERSECT

CURVE BASIS SURFACE BASIS SURFACE

3.21 Aggregate attribute descriptions

The following tables apply to aggregate attributes:

« ATTRBEXPRESSTY PE: holds information for reconstructing type informa-
tion for nested aggregate (i.e. multi-dimensional) attributes

« ARRAY:

OBJECT_TABLE SEQUENCE_NUMBER LOW_BOUND HIGH_BOUND OPTIONAL UNIQUE_ELEMENTS

B_SPLINE CURVE#KNOTS
B_SPLINE CURVE#WEIGHTS
B_SPLINE_ SURFACE#U KNOTS
B_SPLINE SURFACE#V KNOTS
B_SPLINE SURFACE#WEIGHTS
B_SPLINE_ SURFACE#WEIGHTS
B_SPLN CRV#CNTR_PNTS_ 512
B_SPLN_CRVH#KNT_MLTPL_513
B_SPLN SRFC#CNTR_PNT 514
B_SPLN_SRFCH#CNTR_PNT_514
B_SPLN_SRFC#V_MLTPLC_516
B_SPLN SRFC# MLTPLCT 515

o

PR NMRRRNDRRR PR
PP OOKROOORLHROHR
O O O O O O o o o o o

O O O O O O O O o o o o

* BAG,LIST, and SET arevery similar to the array table and are described in de-
tall in [Metz89].

Express to SQL: User’s Guide Page 11 May 1990

3.3

Description of defined types

The following tables contain information about schema-defined types:

 DEFINEDTYPES: records definition of type defined within the Express sche-
ma

This table contains two columns which map atype name to a data type as declared
inthe TY PE block of the Express schema. The value of the DEFINITION column
of thistable is either the name of an Express base type, the name of an aggregate
type, the key word “ENUMERATION,” the key word “SELECT,” the key word
“AGGREGATE”, an Express entity name, or the value of the NAME column from
another row in the table.

TYPE DEFINITION
INFINITY NUMBER
INTERSECTION ENUMERATION ENUMERATION
LIST OF EDGE LIST

SET OF VERTEX SET
SHAPE_OR_DERIVED SELECT
SURF_FORM ENUMERATION
SURF_TYPE ENUMERATION
TOL_IBO ENUMERATION
TOL_MLSN ENUMERATION
TRUE_FALSE OR UNDEFINED BOOLEAN

» ENUMERATION: recordsthe possible values of atype which is an enumera-
tion

TYPE_NAME ORDER_ID VALUE

SURF_FORM

o

BOUNDED_PLANAR

SURF_FORM 1 BOUNDED_ RULE
SURF_FORM 2 BOUNDED_COMPLEX
SURF_FORM 3 UNBOUNDED_ PLANAR
SURF_FORM 4 UNBOUNDED_RULE
SURF_FORM 5 UNBOUNDED_ COMPLEX
SURF_TYPE 0 CIRCULAR
SURF_TYPE 1 FLAT

SURF_TYPE 2 GENERAL

» SELECT: recordsthetypes of aselection

TYPE_NAME CHOICE

SELECT_ FACE_OR_SUBFACE FACE
SHAPE_OR_DERIVED DT_SHAPE_ASPECT
SHAPE _OR_DERIVED GEOMETRIC_DERIVATION

Thefollowing tableisused by the program stepwf_sgl which loadsa STEPfileinto
the database:

 INSTANTIATEDTABLES: keepstrack of which tablesare actually populated.

Express to SQL: User’s Guide Page 12 May 1990

4.0

4.1

4.1.1

41.1.1

The program: fedex_ sql

The program fedex_sql is part of the NIST/PDES Fed-x toolkit. Thismodule trans-
lates an Express schemainto arelational database schema using the methodology
described in this document. The Fed-x toolkit is described in detail in the docu-
ments [Clark90].

Running the program

Two steps are needed to use the software for trandlating an Express schemainto a
relational database schema. First the SQL statements for creating the database
schemaaregenerated. Then these statementsare loaded into the database. The doc-
ument [Strouse90] describesthisprocessfor the NIST/PDES Testbed environment.
To run the program on your own follow the instructions given here.

Generating the SQL schema definition statements
1) The command line for fedex_sql is the following:
fedex sqgl -e express-schema-file

The express-schema-fileisthefilewhere an Expressschemaisstored. Theprogram
may then print out some warning messages regarding the schema.

2) Next the program prompts for the name of an output file. The SQL statements
to create the database schema are stored in thisfile, so it should probably end inthe
.sgl extension.

3) The program then prompts for afile containing alist of entity and table names.
The default the fileis TABLE NAMES. txt . If thefile name provided is not
found, no file will be used and the program will generate unique abbreviations for
the entity names.

4) Finally the program prompts for the name of afilein which to store the list of
entity table names. If nofile nameis provided, the names are stored in thefile TA -
BLE NAMES.txt intheworking directory.

Output files

When this program isfinished, six fileswill have been created. The names of two
of these are supplied by the user in the steps above: the names supplied when
prompted for an output file (step 2) and afilefor thetable names (step 4), TABLE -
NAMES . txt by default. TheothersareDICT DATA.sqgl, DICT INDI-
CES.sqgl, SUPERTYPES.sql, and INDICES. sqgl and are found in the
working directory. Warning: if any of these files existed in the working directory
before the program was run, they would have been replaced by the new files.

The main output file contains the statements for creating al the tables. The begin-
ning of thisfile creates the dictionary tables; the remainder creates the entity and
aggregate tables.

Express to SQL: User’s Guide Page 13 May 1990

4.1.2

4121

4.2

Each line of thefile of table names containstwo words. Thefirst isthe abbreviated
entity name to be used in generating table names, and the second is the entity name
used in the Express schema. The line following the list of names contains "***
***" which signifies the end of the list. The next and last line contains an integer
which isthe first number the program will use in generating unigue abbreviations,
if they are needed.

ThefileDICT DATA.sqgl containsthe SQL statementsthat populate the Express
datadictionary, the other dictionary fileDICT INDICES.sqgl containsthe state-
ments for generating indices on the data dictionary.

Thefile SUPERTYPES. sgl contains the SQL statements to generated views for
the supertype entities defined in the Express schema.

Thefile INDICES. sgl contains SQL statements to create indices on the entity
and aggregate attribute tables.

Creating the database tables
To load the database schema do the following:
5) Log into the database management system.

6) Atthe SQL> prompt type run sql-schema-file, wheresgl-schema-fileis
the name the user provided in step 3 above. Thisfile takes sometime to load de-
pending on the size of the schema. Over 30 minutesin the PDES Testbed environ-
ment is not unusual.

The processloadsthefilesDICT DATA.sgl,DICT INDICES.sgl, and SU-
PERTYPES. sql automaticaly if they arein the working directory.

At this point the database is ready to be populated. After the database has been
completely populated, the indices on the tables should be created. Thisis done by
typing run INDICES.sqgl at the SQL> prompt.

Output files

Thecreation of thetablesgeneratesafilecallederrors. 1st. Thisfileisalisting
of what appeared on the screen during the process. It should not contain anything
of significance, but if there were any problemsthe error message will bein thisfile.

Different versions of the program

The data definition produced by fedex_sql is designed to work with an Oracle data-
base. Due to physical design considerations two tablespaces are used. In the cur-

rent configurationthesearenamed t s0 and t s1. Entity tablesareassigned to these
tablespaces alternately. Theindicesfor an entity table and any tables that represent
aggregate attributes of that entity are created on the opposite tablespace.

An alternate version of fedex_sql is available which does not include designations
for tablespaces. The output of this program is therefore easier to port to other rela-
tional database systems which have different configurations. Thisversionisstored
as fedex_standardsgl.

Express to SQL: User’s Guide Page 14 May 1990

Another version of fedex_sql, fedex_oracle, aso exists. Thisversion outputs the
Expressdictionary datain aflat fileformat rather than as SQL INSERT statements.
Onefileiscreated for each dictionary table, and each fileis named for the table that
it represents. A specialized tool, such as Oracle’ s SQL* L oader can be used to load
the dictionary tables from this output.

Express to SQL: User’s Guide Page 15 May 1990

cT
TT
0T

N M ¢ n O~ o

T

YIANNN IONINOIS

IDESYHINI ATHS

YIINAN WO

SIHDIEM

SION

SHEILIDITAILIAN IONM

SIONM NO XHANI ¥Hddn

WHOAINA

SINIOd TOMINOD

SINIOd TOMINOD NO XHANI Jd3ddn
HENDEA

SIXY

WHLSAS HIYNIQJIO0D T¥DO0T

JNVYN NANTOD

NN AN ANANNNANNNAN

4

3d00 dIHSHIANMO 3IAdAL AIANIHIA SSTHAXT IAdAL SSIAAXI

QINIAHANN ¥O HASTVA HNUL
WMOA FANND ANITAS d
HIVOHIDOV

HLVOIUOOY

HIVOHIOOY

MIDILINT

HIAL WMOAINO
HIVOHIOOY

MIDILINT

MADEINT
NOIIVWIOASNVIL
WHLSAS HIVNIQIOOD

YIDHILNTI

NYAT00d IDESYHINI dATHS
NOILVYINANI YHINON WIOA
AIYDHYDOY SIHOIEM
HIVOTIDOV SIONM
HIYDHIDOY SHILIDITAILTIAN LONM
MHDHINI ~ SIONM NO XHANI d3ddn
NOIIVYHEWANE WIOAINA
HIYDHIDOY SINIOd TOYLNOD
SINIOd TOYINOD NO XHANI JdHddn
MADHINI cfceitalciel
ALILNZ SIXY

ALIINIWHLSAS HIYNIQIOO0D T¥OOT

0S3ATLNGIY L LVSSASSTHd X3 3|gel uond1iosa@aingliny

IAIND ANITAS g
IAIND ANITAS g
HANND ANITAS €
IAIND ANITAS g
IAIND ANITAS g
HANND ANITAS €
IAIND ANITAS g
IAIND ANITAS g
HANND ANITAS €
IAIND ANITAS g
IAIND ANITAS g
HANND ANITAS €

JNVYN ILNGIYLLY JAVYN LHOHS ALILNT

A References

[Altemueller88a]
[Altemeuller88b]
[ANSI86]

[Clark90a]

[Clark90b]

[Clark90c]

[Clark90d]

[Clark90¢]

[Metz89]

[Nickerson90]

[Schenck89]

[Schenck90]

[Strouse90]

Altemueller, J., The STEP File Structure, 1SO TC184/SC4/WG1
Document N279, September, 1988

Altemeuller, J., Mapping from Express to Physical File Structure,
SO TC184/SC4/WG1 Document N280, September, 1988

American National Standards Institute, Database L anguage SOL,
Document ANSI X3.135-1986

Clark, S. N., An Introduction to The NIST PDES Toolkit, NISTIR
4336, National Institute of Standardsand Technology, Gaithersburg,
MD, May 1990

Clark, S.N., Fed-X: The NIST Express Tranglator, NISTIR,
National Institute of Standards and Technology, Gaithersburg, MD,
forthcoming

Clark, S.N., The NIST Working Form for STEP, NISTIR 4351,
National Institute of Standards and Technology, Gaithersburg, MD,
June 1990

Clark, S.N., The NIST PDES Toolkit: Technical Fundamentals,
NISTIR 4335, National Institute of Standards and Technology,
Gaithersburg, MD, May 1990

Clark, S.N., NIST ExpressWorking Form Programmer’ s Reference,
NISTIR, National Institute of Standards and Technology,
Gaithersburg, MD, forthcoming

Metz, W.P.,and K.C. Morris, Trand ation of an Express Schemainto

SQL, PDES Inc. internal document, November 1989
Nickerson, D., The NIST Database Loader: STEP Working Form to

SQL, NISTIR 4337, National Institute of Standards and
Technology, Gaithersburg, MD, May 1990

Schenck, D., ed., Information Modeling L anquage Express:
Language Reference Manual, SO TC184/SC4/\WG1 Document
N362, May 1989

Schenck, D., ed., Information Modeling L anquage Express:
Language Reference Manual, SO TC184/SC4/\WG1 Document
N466, March 1990

Strouse, Kathleen and M. Mclay, PDES Testbed User’s Guide,
NISTIR, National Institute of Standards and Technology,
Gaithersburg, MD, forthcoming

Oracle isaregistered trademark of Oracle Corporation

No approval or endorsement of any commercia product by the National Institute of Standards and Technology is

intended or implied

The work described was funded by the United States Government, and is not subject to copyright.

ORDER and INFORMATION FORM

MAIL TO: |_

NATIONAiLi National Institute of Standards and Technology
» . ~ Gaithersburg MD., 20899
Metrology Building, Rm-A127
~ Attn: Secretary National PDES Testbed
(301) 975-3508

TESTBED

Please send the following documents
and/or software:
Clark, S.N., An Introduction to The NIST PDES Toolkit

[]

Clark, S.N., The NIST PDES Toolkit: Technica Fundamentals

Clark, S.N., Fed-X: The NIST Express Translator

Clark, S.N., The NIST Working Form for STEP

Clark, S.N., NIST Express Working Form Programmer’s Reference

Clark, S.N., NIST STEP Working Form Programmer’ s Reference,

Clark, SN., QDES User's Guide

Clark, S.N., QDES Administrative Guide

Morris, K.C., Trandating Expressto SOL: A User’'s Guide

Nickerson, D., The NIST SOQL Database L oader: STEP Working Form to
SQL

Strouse, K., McLay, M., The PDES Testbed User Guide

L OOt oo o

OTHER (PLEASE SPECIFY)

These documents and corresponding software will be
available from NTIS in the future. When available, the
NTIS ordering information will be forthcoming.

NIST

