
National PDES Testbed
Report Series

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NATIONAL

TESTBED

Translating
Express to SQL: A
User’s Guide

NISTIR 90-4341

U.S. DEPARTMENT OF

COMMERCE

Robert A. Mosbacher,

Secretary of Commerce

National Institute of

Standards and Technology

John W. Lyons, Director

National PDES Testbed

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NATIONAL

TESTBED

Translating
Express to SQL: A
User’s Guide
Katherine C. Morris

NISTIR 90-4341

May 8, 1990

Express to SQL: User’s Guide i May 1990

Translating Express to SQL: A
User’s Guide

1.0 Overview ..1

2.0 Mapping Express Constructs into Relational Database Tables...........2
2.1 Entity Tables ..2

2.1.1 Table Name...3
Table name for a NULL subtype .. 3

2.1.2 Entity-ID Column ...3
2.1.3 Sharable Column...4
2.1.4 Inherited Attributes ...4
2.1.5 Explicit Entity Attributes ..4

2.2 Attributes ...5
2.2.1 Attribute Columns...6

Data Types .. 6
Optional attributes... 7
Unique attributes... 7

2.2.2 Attribute tables..8
Table Name... 8
ID Column .. 8
Value Column ... 8
Aggregate Positioning Columns ... 8
Nested Aggregate Objects .. 9
Optional and Uniqueness Concepts .. 9

2.3 Entity Views ..9

3.0 Dictionary ..10
3.1 Entity descriptions ...10
3.2 Attribute descriptions...10

3.2.1 Aggregate attribute descriptions ...11
3.3 Description of defined types ..12

4.0 The program: fedex_sql ..13
4.1 Running the program ...13

4.1.1 Generating the SQL schema definition statements...........................13
Output files ... 13

4.1.2 Creating the database tables..14
Output files ... 14

4.2 Different versions of the program..14

Express to SQL: User’s Guide Page 1 May 1990

1.0 Overview
This document describes the procedure used by the fedex_sql software to translate
an Express schema into the SQL statements which generate a relational database
schema for storing STEP data. The program which loads a STEP physical file into
the database is stepwf_sql and is describe in a separate document [Nickerson90].
The program uses FED-X, an Express parser, which is documented in [Clark90].
The software has been developed as part of the National PDES Testbed effort and
is funded by the Computer Aided Logistics Support (CALS) project.

Three types of issues are involved in translating Express into a relational database
schema: translation of the semantic constructs of Express into the data definition
language of SQL, resolution of limitiation imposed by the database management
system, and development of a data dictionary. The first two are discussed in section
2. First, the constructs of the Express language are translated into relational con-
cepts. The application of this mapping to a particular Express schema, generates
the SQL data definition language which is the basis for the database.

Secondly issues involving the particular database management system (DBMS) are
resolved. In this case Oracle’s SQL*Plus is being used, but the translation also con-
forms to the SQL standard specification as described in [ANSI86] unless otherwise
noted. The basic data types defined in Express are mapped into the data types of
the SQL*Plus. The names used by the Express schema need to be modified to be
acceptable to the DBMS. For example, they could be too long or the same as key
words in the SQL*Plus.

Section 3 discusses the data dictionary. The dictionary holds information from the
conceptual specification which is not explicitly captured in the SQL schema. The
dictionary captures some of the constraints specified in the conceptual schema
which are not directly mapped into the database management system’s facilities.
For instance, the Uniqueness Rule as defined by the Express language can often be
handled directly by the database management system; however, constraints such as
the minimum or maximum number of elements in a set are not handled by most da-
tabase management systems.

The dictionary captures descriptive information provided by the conceptual schema
which is also not directly represented in the SQL definitions. For example, Express
schemas contain type definitions. Through these definitions semantic information
describing attributes is relayed. For instance, the data type “weight_in_pounds” can
be defined in an Express schema; a user is then able to associate more meaning with
an attribute described as having this data type, than if the type “real” had been as-
signed to that attribute. However, SQL has no expression available which would
allow one to store the depth of this meaning. Therefore, the information is stored
in a dictionary.

Section 4 describes how to run the program fedex_sql and how to use its output.

Express to SQL: User’s Guide Page 2 May 1990

2.0 Mapping Express Constructs into
Relational Database Tables
This section describes how the Express entity definitions are represented in rela-
tional tables. The translation of the entities is summarized as follows: (1) Every
entity defined in the Express schema is translated into a table or view in the rela-
tional database. (2) An entity without subtypes is represented as a table. (3) An
entity which has subtypes is represented as a view of the tables which represent its
subtypes. Data can be retrieved from these views, but not inserted into them. (4) If
an entity has a “XOR NULL” specified in the Express “Supertype of” statement, it
has both a table and a view associated with it. Data inserted into the table associ-
ated with the instances of the NULL subtype entity appears in the view along with
the data from the other subtypes’ tables.

The attributes of an entity are represented either as columns in the entity’s table or
as another table. Aggregate attributes are represented as separate tables. The dic-
tionary table EXPRESSYS$ATTRIBUTEDESC indicates how the attribute is rep-
resented.

2.1 Entity Tables
A primary table, called an entity table, is associated with each entity with no sub-
types and with each entity which has ’NULL’ as one of its subtypes. The following
template shows the structure of the entity tables. It is described in the sections
which follow.

This mapping is based on the mapping used by the STEP physical file representa-
tion of an Express schema [Altemueller88]. Specifically, the decision to represent
only entities with no subtypes in tables is based primarily on the fact that these are
the only entities which can be populated in a physical file. Furthermore, the order
of the columns is based on the ordering of attributes in the physical file and the in-
heritance rules for attributes are applied in the same way. The use of ’AND’ and
’OR’ in the supertype declarations is also unaccounted for just as in the current
STEP physical file mapping.

ID SHARABLE INHERITED EXPLICIT
ATTRIBUTE
COLUMNS

ATTRIBUTE
COLUMNS

Table Name = Entity’s abbreviated Name

Express to SQL: User’s Guide Page 3 May 1990

2.1.1 Table Name
The table representing an entity is named after the entity. When the entity’s name
is too long, it is abbreviated. This mapping of the entity names and table names is
found in the EXPRESSYS$NAMES table and also in a file generated by the
fedex_sql program. The name of this file is TABLE_NAMES.txt by default. The
algorithm for generating the new names is given below.

1. If the name is one of the key words reserved by the DBMS, the last character
is changed to “#”.

2. If name is less than 20 characters, no abbreviation is needed.

3. Otherwise, the last vowel or repeated character is removed from the name until
the name is less than 20 characters or all these characters have been removed.

4. If the name is still not less than 20 characters, the last character of the longest
subword is dropped until the shortened name is less than 20 characters. A sub-
word is a portion of the word which is separated by underscores or pound signs.

5. If the name is still not less than 20 characters, the character “_” is used as the
name abbreviation. (Thus a numeric name is generated for the table in the fol-
lowing step.)

6. Append a unique three digit number on the end of the abbreviation to guarantee
that the name is unique.

2.1.1.1 Table name for a NULL subtype

The name of the table representing an entity with NULL as one of its subtypes is
formed as follows: (1) The entity is abbreviated as described above, (2) The string
“_NULL” is appended to the end of the abbreviated entity name. This table is in-
cluded in the view of that entity, which is described in section 2.3.

2.1.2 Entity-ID Column
The first column of every entity table is ID. It contains a unique identifier for every
instance of an entity. This identifier is used as the primary key of the entity table;
and it is likely to be referenced in two situations outside of this table. An entity
referenced by another entity as an attribute is represented by this identifier in that
attribute’s column of the entity table. The EXPRESSYS$FRNKEYREFERENCES
table can be used to find out which tables reference other tables or, conversely, to
find out where a table is referenced. For an entity with aggregate attributes
(attributes whose type is array, bag, list or set), the same entity identifier is also used
in the tables which contain the data for these attributes. Detail about aggregate
attribute tables is given below in section 2.2.2.

The identifiers generated from the program stepwf_sql, which loads data into the ta-
bles, take the following form:

table_name!00000000
Table_name is the name of the entity table, and 00000000 is a unique integer.

Express to SQL: User’s Guide Page 4 May 1990

2.1.3 Sharable Column
Every entity table contains a column called SHARABLE. This column is currently
used as an indicator of whether or not the entity instance can be used by more than
one other entity instance. This is currently interpreted to mean whether the instance
is embedded in another instance in the input STEP physical file.

In future versions of the database this could be used in checking uniqueness and
equality of entity instances. For example, the question of whether two points with
the same coordinates are the same point or two distinct instances of a point is un-
clear. If the SHARABLE column is FALSE, the points are definitively not the
same; however, if the column is TRUE, the two points may be considered the same.
Furthermore, the field could be used as a reference counter to ascertain whether a
shared instance is to be deleted when a referencing instance is deleted.

2.1.4 Inherited Attributes
The next group of columns to appear in an entity’s table represent the non-aggregate
attributes inherited from the entity’s supertype(s). The columns are specified in the
order of inheritance defined by the STEP physical file structure. The origin of the
attribute, the name of the entity in which the attribute is specified in the Express
schema, is found in the EXPRESSYS$SRC table.

2.1.5 Explicit Entity Attributes
Finally the non-aggregate attributes declared directly in the Express definition of
the entity are columns the table.

In the example that follows the portion of the Express schema shown produces the
SQL statement to create a table.

EXPRESS:

ENTITY geometry (* GEOM-1 *)
 SUPERTYPE OF (point XOR
 vector XOR
 curve XOR
 surface XOR
 coordinate_system XOR
 transformation XOR
 axis_placement);
 local_coordinate_system : OPTIONAL coordinate_system;
 axis : OPTIONAL transformation;
END_ENTITY;

ENTITY vector (* GEOM-3 *)
 SUPERTYPE OF (direction XOR
 vector_with_magnitude)
 SUBTYPE OF (geometry);
END_ENTITY;

ENTITY direction (* GEOM-14 *)
 SUBTYPE OF (vector);
 x : REAL;

Express to SQL: User’s Guide Page 5 May 1990

 y : REAL;
 z : OPTIONAL REAL;
END_ENTITY;

SQL:

CREATE TABLE DIRECTION (
ID CHAR(40) PRIMARY KEY,
SHARABLE INTEGER NOT NULL,
LOCAL_COORDINATE_SYSTEM CHAR(40) /* FOREIGN KEY */,
AXIS CHAR(40) /* FOREIGN KEY */,
X FLOAT NOT NULL,
Y FLOAT NOT NULL,
Z FLOAT

);

2.2 Attributes
The attributes of an entity are represented as either a column in the entity table or
as a table of their own. If the attribute is aggregate (an array, bag, list, or set), it
has its own table; otherwise, the attribute is represented as a column.

The EXPRESSYS$DEFINEDTYPES dictionary table describes the attributes of
the entity tables. It includes a short name for the attribute and information about the
type of the attribute as it is given in the Express schema. The short name is used in
assigning a name for the attribute in the database. The column EXPRESS_TYPE
contains a code which can be used to determine whether the attribute is represented
as a column in the entity table or as an aggregate table. The valid values for this
field are AGGREGATE, ENTITY, SELECT, ENUMERATION, INTEGER,
REAL, BOOLEAN, LOGICAL, STRING, and NUMBER.

When the type is AGGREGATE or ENTITY, the value of the attribute is represent-
ed in another table. In the case of ENTITY the owning entity table has a column
for the attribute. The column contains a key (an entity identifier) into an entity ta-
ble. In the case of the type AGGREGATE the owning entity table does not contain

TABLE:

 x y z

DIRECTION

local_coordinate axis
_systemID SHARABLE

EXPLICIT ATTRIBUTESSYSTEM ATTRIBUTES INHERITED ATTRIBUTES

Express to SQL: User’s Guide Page 6 May 1990

a column for this attribute. The entity identifier from the owning entity table is used
to identify the aggregate data items in the aggregate table as belonging to that entity.

2.2.1 Attribute Columns
Non-aggregate attributes are represented as columns in the entity tables. The col-
umns have the same name as the attribute when this name is less than 30 characters
(the maximum length allowed by SQL); otherwise, the name is abbreviated by trun-
cating the attribute name to 27 characters and appending a unique 2 digit integer to
the end. The same abbreviated name is used for attributes with the same name in
different tables.

2.2.1.1 Data Types

Oracle data types are assigned to the Express base types as follows for the purpose
of representing attributes as columns in the database. The table shows all the base
types of Express as described in [Schenck90]. Note that the default length of an at-
tribute with type string is 240.

EXPRESS ORACLE

Integer INTEGER
Integer(n) NUMBER(n)
Real DECIMAL
Real(n) NUMBER(n)
Number NUMBER
String CHAR(240)
String(n) CHAR(n) for n <= 240, LONG for strings up to 64 K
Boolean INTEGER
Logical INTEGER

The last two base types above, boolean and logical, are treated as special cases of
enumerated types which are described below.

Attributes with the following complex Express types are also represented as col-
umns in the database. Below is a mapping of these Express types to Oracle data
types.

Entity CHAR(40) FOREIGN KEY
Select CHAR(40)
Enumeration INTEGER

Enumeration type

Both enumeration and select types imply the specification of a domain for
attributes. An enumerated type specifies the possible values for the domain
explicitly; a select type specifies the possible values indirectly. The values of an
enumeration are stored in the dictionary table EXPRESSYS$ENUMERATION.
This table assigns integer values to the values of an enumeration. The integer
values are what is then stored in the attribute columns. The dictionary table is
consulted to see what the integer values represent. The reason for storing the
integer values, rather than the string values that they represent, is the fact that an
enumeration type implies an ordering on its possible values. In order to enforce the
ordering the integer values are used.

Express to SQL: User’s Guide Page 7 May 1990

TYPE
 b_spline_curve_form = ENUMERATION OF
 (line_segment,
 circular_arc,
 elliptic_arc,
 parabolic_arc,
 hyperbolic_arc);
END_TYPE;

After this type is entered into the EXPRESSYS$ENUMERATION table,
the table looks as follows:

TYPE_NAME ORDER_ID VALUE

B_SPLINE_CURVE_FORM 0 LINE_SEGMENT
B_SPLINE_CURVE_FORM 1 CIRCULAR_ARC
B_SPLINE_CURVE_FORM 2 ELLIPTIC_ARC
B_SPLINE_CURVE_FORM 3 PARABOLIC_ARC
B_SPLINE_CURVE_FORM 4 HYPERBOLIC_ARC

Select type

With a select type the possible values of an attribute come from the group of the
possible values of several other types. When these types are entities, the values are
entity identifiers, as if the attribute’s type had been an entity. From the entity iden-
tifiers generated by the database loader it is possible to tell which table contains the
entity instance information for a given entry. The first part of the entity identifier
is the name of the entity table.

On the other hand, when the types are not entities, then the values must be of the
same base type as these defined types. In Express it is possible to create an object
which does not have a single base type through the use of a select type; fedex_sql,
which implements this design, does not deal with this situation. We assume that in
the majority of instances of select types the selection is amongst entity types; there-
fore, a select type attribute maps to the SQL type CHAR(40) just as do entity type
attributes. When the values of the selection are not entity identifiers, the field rep-
resenting these type attributes is still confined to CHAR(40). The choices of the se-
lection for a select type are stored in the dictionary table EXPRESSYS$SELECT.

2.2.1.2 Optional attributes

Each attribute column in the entity tables is specified to be NOT NULL unless the
key word OPTIONAL is specified for that attribute in the Express definitions. The
DBMS then only allows rows which contain values for all non-optional attributes
to be inserted in the database.

2.2.1.3 Unique attributes

When an attribute is characterized as being unique in the Express definition, a
unique index is created on the column which represents that attribute in the entity
table. The indices are named after the table to which they apply. An integer is ap-
pended to the end of the table name to create a unique name for the index. Every

Express to SQL: User’s Guide Page 8 May 1990

table has at least one index on the ID column. In this way the Express uniqueness
construct is directly supported by the DBMS for non-aggregate attributes.

2.2.2 Attribute tables
Attributes with aggregate data types are represented as tables, called aggregate ta-
bles, in the database. The valid Express aggregate data types for attributes are ar-
ray, bag, list, and set. Each item of the aggregate object is represented by a row in
the aggregate table.

2.2.2.1 Table Name

Aggregate tables’ names are created by combining the abbreviated name of the
owning entity (which is the name of the entity table) with the name of the attribute,
which it represents. The two names are separated by a pound sign (#), and then the
new string is abbreviated using the same algorithm described above for naming en-
tity tables. The unabbreviated and abbreviated string pair are entered into the dic-
tionary table EXPRESSYS$NAMES.

2.2.2.2 ID Column

The first column in every aggregate table is called ID. The values in this column
correspond to the values in the ID column of the owning entity’s table. Whereas,
in the entity table there is only one entry for each unique entity identifier, in this ta-
ble there are multiple rows for a given entity identifier. The value of the ID column
is the same for all the items contained in a a single aggregate attribute.

2.2.2.3 Value Column

The last column in all aggregate tables is called VALUE. This column contains the
data for the individual data items of the aggregate object. For example, if the ag-
gregate is a “list of integer”, this column contains integers; if the aggregate is a “set
of cartesian points”, this column contains entity identifiers from the cartesian point
entity table.

2.2.2.4 Aggregate Positioning Columns

The second column in an aggregate table indicates the position of the individual
data item in the aggregate object. The name of this column is determined by the
type of the aggregate object. For example, if the object is an array, this column is
called SUBSCRIPT_1. The column name can be determined from the following ta-
ble:

AGGREGATE TYPE COLUMN NAME

Array SUBSCRIPT_n
Bag ELEMENT_ID_n
List POSITION_ID_n
Set ELEMENT_ID_n

The n in the column name is an integer, which is always 1 for a simple, not nested,
aggregate attribute.

When the aggregate is a list, the following column is PREVIOUS_ID_n.

Express to SQL: User’s Guide Page 9 May 1990

2.2.2.5 Nested Aggregate Objects

If the aggregate attribute is nested, or multi-dimensional, more positioning columns
follow the initial one. These columns are named in the same way as the initial po-
sitioning column, as described above. The integer n in the column name indicates
the nesting level that this column represents. For example, for a two-dimensional
array there are two positioning columns SUBSCRIPT_1 and SUBSCRIPT_2. The
first column contains the value of the first subscript of the array and the second col-
umn contains the values for the second subscript of the array. The data for the item
at position [1,2] of the array would have a row in the table which contains the fol-
lowing entry:

ID SUBSCRIPT_1 SUBSCRIPT_2 VALUE

entity-id 1 2 data item

2.2.2.6 Optional and Uniqueness Concepts

The Express concepts, optional and unique, are not directly supportable for
aggregate attributes by a relational database system under this mapping. The
information is stored in the dictionary tables EXPRESSYS$ARRAY,
EXPRESSYS$BAG, EXPRESSYS$LIST, and EXPRESSYS$SET.

With non-aggregate objects the Express key word UNIQUE is represented in SQL
by creating a unique index on an attribute. However, the translation of UNIQUE
with complex objects involves comparing the objects element by element. Further-
more, equality is not defined for aggregate objects; therefore, uniqueness for nested
aggregate objects is not enforceable.

In Express the key word OPTIONAL within aggregate attributes indicates that not
all the data elements of the attribute must be specified. This is different than desig-
nating that the object is an optional attribute of the entity, which is modeled by the
non-use of the NOT NULL clause in the entity table definition.

2.3 Entity Views
Entities which have subtypes are represented as views of the entity tables in the da-
tabase. Views serve as tables for the purpose of retrieving data from the database,
but data can not be inserted in or deleted from the views directly. Entity views are
named using the algorithm given earlier for naming entity tables. Also as with en-
tity tables the original and abbreviated name are entered into the EXPRESSY-
S$NAMES table. The entity views contain an ID column and columns for all the
non-aggregate, explicit and inherited attributes which belong to the entity being
viewed. There are no views for the aggregate attributes.

The dictionary table EXPRESSYS$CLASSES shows the class hierarchy and can be
used to see which entity tables are included in a view.

Express to SQL: User’s Guide Page 10 May 1990

3.0 Dictionary
Fourteen dictionary tables are used to store semantic information found in Express
schemas. Identical tables are established for each and every schema. The SQL
statements for creating these tables are found in the beginning of the main output
file of fedex_sql. The dictionary tables summarized below are described in detail
in the in the document Translation of an Express Schema into SQL. In the database
the names of these tables are prefixed by "EXPRESSYS$" to indicate that they are
dictionary tables.

Four of the tables involve the handling of aggregate data types. One table maintains
information pertaining to subtype and supertype relations. Another table stores the
logical names of tables. Finally there are tables for representing the Express type
definitions and another for recording descriptions of entity attributes in the terms of
these definitions.

3.1 Entity descriptions
• NAMES: maps Express names to the names used by the database system

NAME SHORT_NAME

BOUNDARY_LOCATION_SHAPE_ASPECT BNDRY_LCTN_SHP_SPCT_494
BNDRY_LCTN_SHP_SPCT_494#REPRESENTATIONS BND_LCT_SHP_SP_49#RP_509
BOUNDED_CURVE BOUNDED_CURVE
BOUNDED_SURFACE BOUNDED_SURFACE
B_SPLINE_CURVE B_SPLINE_CURVE
B_SPLINE_CURVE#CONTROL_POINTS B_SPLN_CRV#CNTR_PNTS_512
B_SPLINE_CURVE#KNOT_MULTIPLICITIES B_SPLN_CRV#KNT_MLTPL_513
B_SPLINE_CURVE#KNOTS B_SPLINE_CURVE#KNOTS
B_SPLINE_CURVE#WEIGHTS B_SPLINE_CURVE#WEIGHTS

• CLASSES: captures the class structure of the Express schema

SUBTYPE SUPERTYPE

BNDRY_LCTN_SHP_SPCT_494 DMNSNLTY_0_SHP_SPCT_495
BOUNDED_CURVE CURVE
BOUNDED_SURFACE SURFACE
B_SPLINE_CURVE BOUNDED_CURVE
B_SPLINE_SURFACE BOUNDED_SURFACE
CURVE GEOMETRY

3.2 Attribute descriptions
The tables used to describe attributes are the following:

• ATTRIBUTEDESC: contains Express type information, whether the attribute
is optional, unique, or sharable, and the name used to represent the attribute in
the database (See the attached table.)

Express to SQL: User’s Guide Page 11 May 1990

• FRNKEYREFERENCES: maps attributes to the table which would represent
them

BASE_TABLE_NAME REFERENCING_TABLE_NAME REFERENCING_TABLE_COLUMN

B_SPLINE_CURVE UNSTRCT_GMTRY_SM_RP_536 DEFINITION
B_SPLINE_CURVE UNSTR_GMTRY_PRMTR_RP_921 DEFINITION
B_SPLINE_CURVE UNSTR_GMTR_DM_0_S_RP_510 DEFINITION
B_SPLINE_CURVE UNSTRUCT_GMTRY_R_RP_558 DEFINITION
B_SPLINE_CURVE TRIMMED_CURVE BASIS_CURVE
B_SPLINE_CURVE SWP_PRFL_NL#CRV_PRFL_949 VALUE
B_SPLINE_CURVE SURFACE_CURVE CURVE_1
B_SPLINE_CURVE SIZ_CHRCTRSTC_DMNSN_943 CENTER_OF_SYMMETRY
B_SPLINE_CURVE RCTNGL_PRFL#CRV_PRFL_936 VALUE
B_SPLINE_CURVE RCTRCK_PRFL#CRV_PRFL_935 VALUE
B_SPLINE_CURVE POINT_ON_CURVE BASIS_CURVE
B_SPLINE_CURVE PCURVE BASIS_CURVE
B_SPLINE_CURVE OTHER_SWEEP_PATH PATH
B_SPLINE_CURVE OTHER_SWEEP_PATH PROFILE
B_SPLINE_CURVE N_GON_PRFL#CRV_PRFL_915 VALUE
B_SPLINE_CURVE OTHR_CLS_PRF#CRV_PRF_916 VALUE
B_SPLINE_CURVE INTERSECTION_CURVE BASIS_CURVE

• ATTRSRC: indicates the entity from which an attribute originated in the inher-
itance hierarchy

ENTITY_SHORT_NAME ATTRIBUTE_NAME COLUMN_NAME

GEOMETRY AXIS AXIS
GEOMETRY LOCAL_COORDINATE_SYSTEM LOCAL_COORDINATE_SYSTEM
B_SPLINE_CURVE DEGREE DEGREE
B_SPLINE_CURVE UPPER_INDEX_ON_CONTROL_POINTS UPPER_INDEX_ON_CONTROL_POINTS
B_SPLINE_CURVE KNOT_MULTIPLICITIES KNOT_MULTIPLICITIES
B_SPLINE_CURVE KNOTS KNOTS
B_SPLINE_CURVE SELF_INTERSECT SELF_INTERSECT
CURVE BASIS_SURFACE BASIS_SURFACE

3.2.1 Aggregate attribute descriptions
The following tables apply to aggregate attributes:

• ATTRBEXPRESSTYPE: holds information for reconstructing type informa-
tion for nested aggregate (i.e. multi-dimensional) attributes

• ARRAY:

OBJECT_TABLE SEQUENCE_NUMBER LOW_BOUND HIGH_BOUND OPTIONAL UNIQUE_ELEMENTS

B_SPLINE_CURVE#KNOTS 1 1 0 0
B_SPLINE_CURVE#WEIGHTS 1 0 0 0
B_SPLINE_SURFACE#U_KNOTS 1 1 0 0
B_SPLINE_SURFACE#V_KNOTS 1 1 0 0
B_SPLINE_SURFACE#WEIGHTS 1 0 0 0
B_SPLINE_SURFACE#WEIGHTS 2 0 0 0
B_SPLN_CRV#CNTR_PNTS_512 1 0 0 0
B_SPLN_CRV#KNT_MLTPL_513 1 1 0 0
B_SPLN_SRFC#CNTR_PNT_514 1 0 0 0
B_SPLN_SRFC#CNTR_PNT_514 2 0 0 0
B_SPLN_SRFC#V_MLTPLC_516 1 1 0 0
B_SPLN_SRFC#_MLTPLCT_515 1 1 0 0

• BAG, LIST, and SET are very similar to the array table and are described in de-
tail in [Metz89].

Express to SQL: User’s Guide Page 12 May 1990

3.3 Description of defined types
The following tables contain information about schema-defined types:

• DEFINEDTYPES: records definition of type defined within the Express sche-
ma

This table contains two columns which map a type name to a data type as declared
in the TYPE block of the Express schema. The value of the DEFINITION column
of this table is either the name of an Express base type, the name of an aggregate
type, the key word “ENUMERATION,” the key word “SELECT,” the key word
“AGGREGATE”, an Express entity name, or the value of the NAME column from
another row in the table.

TYPE DEFINITION

INFINITY NUMBER
INTERSECTION_ENUMERATION ENUMERATION
LIST_OF_EDGE LIST
SET_OF_VERTEX SET
SHAPE_OR_DERIVED SELECT
SURF_FORM ENUMERATION
SURF_TYPE ENUMERATION
TOL_IBO ENUMERATION
TOL_MLSN ENUMERATION
TRUE_FALSE_OR_UNDEFINED BOOLEAN

• ENUMERATION: records the possible values of a type which is an enumera-
tion

TYPE_NAME ORDER_ID VALUE

SURF_FORM 0 BOUNDED_PLANAR
SURF_FORM 1 BOUNDED_RULE
SURF_FORM 2 BOUNDED_COMPLEX
SURF_FORM 3 UNBOUNDED_PLANAR
SURF_FORM 4 UNBOUNDED_RULE
SURF_FORM 5 UNBOUNDED_COMPLEX
SURF_TYPE 0 CIRCULAR
SURF_TYPE 1 FLAT
SURF_TYPE 2 GENERAL

• SELECT: records the types of a selection

TYPE_NAME CHOICE

SELECT_FACE_OR_SUBFACE FACE
SHAPE_OR_DERIVED DT_SHAPE_ASPECT
SHAPE_OR_DERIVED GEOMETRIC_DERIVATION

The following table is used by the program stepwf_sql which loads a STEP file into
the database:

• INSTANTIATEDTABLES: keeps track of which tables are actually populated.

Express to SQL: User’s Guide Page 13 May 1990

4.0 The program: fedex_sql
The program fedex_sql is part of the NIST/PDES Fed-x toolkit. This module trans-
lates an Express schema into a relational database schema using the methodology
described in this document. The Fed-x toolkit is described in detail in the docu-
ments [Clark90].

4.1 Running the program
Two steps are needed to use the software for translating an Express schema into a
relational database schema. First the SQL statements for creating the database
schema are generated. Then these statements are loaded into the database. The doc-
ument [Strouse90] describes this process for the NIST/PDES Testbed environment.
To run the program on your own follow the instructions given here.

4.1.1 Generating the SQL schema definition statements
1) The command line for fedex_sql is the following:

 fedex_sql -e express-schema-file

The express-schema-file is the file where an Express schema is stored. The program
may then print out some warning messages regarding the schema.

2) Next the program prompts for the name of an output file. The SQL statements
to create the database schema are stored in this file, so it should probably end in the
.sql extension.

3) The program then prompts for a file containing a list of entity and table names.
The default the file is TABLE_NAMES.txt. If the file name provided is not
found, no file will be used and the program will generate unique abbreviations for
the entity names.

4) Finally the program prompts for the name of a file in which to store the list of
entity table names. If no file name is provided, the names are stored in the file TA-
BLE_NAMES.txt in the working directory.

4.1.1.1 Output files

When this program is finished, six files will have been created. The names of two
of these are supplied by the user in the steps above: the names supplied when
prompted for an output file (step 2) and a file for the table names (step 4), TABLE_-
NAMES.txt by default. The others are DICT_DATA.sql, DICT_INDI-
CES.sql, SUPERTYPES.sql, and INDICES.sql and are found in the
working directory. Warning: if any of these files existed in the working directory
before the program was run, they would have been replaced by the new files.

The main output file contains the statements for creating all the tables. The begin-
ning of this file creates the dictionary tables; the remainder creates the entity and
aggregate tables.

Express to SQL: User’s Guide Page 14 May 1990

Each line of the file of table names contains two words. The first is the abbreviated
entity name to be used in generating table names, and the second is the entity name
used in the Express schema. The line following the list of names contains "***
***" which signifies the end of the list. The next and last line contains an integer
which is the first number the program will use in generating unique abbreviations,
if they are needed.

The file DICT_DATA.sql contains the SQL statements that populate the Express
data dictionary, the other dictionary file DICT_INDICES.sql contains the state-
ments for generating indices on the data dictionary.

The file SUPERTYPES.sql contains the SQL statements to generated views for
the supertype entities defined in the Express schema.

The file INDICES.sql contains SQL statements to create indices on the entity
and aggregate attribute tables.

4.1.2 Creating the database tables
To load the database schema do the following:

5) Log into the database management system.

6) At the SQL> prompt type run sql-schema-file, where sql-schema-file is
the name the user provided in step 3 above. This file takes some time to load de-
pending on the size of the schema. Over 30 minutes in the PDES Testbed environ-
ment is not unusual.

The process loads the files DICT_DATA.sql, DICT_INDICES.sql, and SU-
PERTYPES.sql automatically if they are in the working directory.

At this point the database is ready to be populated. After the database has been
completely populated, the indices on the tables should be created. This is done by
typing run INDICES.sql at the SQL> prompt.

4.1.2.1 Output files

The creation of the tables generates a file called errors.lst. This file is a listing
of what appeared on the screen during the process. It should not contain anything
of significance, but if there were any problems the error message will be in this file.

4.2 Different versions of the program
The data definition produced by fedex_sql is designed to work with an Oracle data-
base. Due to physical design considerations two tablespaces are used. In the cur-
rent configuration these are named ts0 and ts1. Entity tables are assigned to these
tablespaces alternately. The indices for an entity table and any tables that represent
aggregate attributes of that entity are created on the opposite tablespace.

An alternate version of fedex_sql is available which does not include designations
for tablespaces. The output of this program is therefore easier to port to other rela-
tional database systems which have different configurations. This version is stored
as fedex_standardsql.

Express to SQL: User’s Guide Page 15 May 1990

Another version of fedex_sql, fedex_oracle, also exists. This version outputs the
Express dictionary data in a flat file format rather than as SQL INSERT statements.
One file is created for each dictionary table, and each file is named for the table that
it represents. A specialized tool, such as Oracle’s SQL*Loader can be used to load
the dictionary tables from this output.

A
tt

ri
bu

te
 D

es
cr

ip
ti

on
 T

ab
le

:
E

X
P

R
E

SS
Y

S$
A

T
T

R
IB

U
T

E
D

E
SC

E
N

T
IT

Y
_S

H
O

R
T

_N
A

M
E

A
T

T
R

IB
U

T
E

_N
A

M
E

E
X

P
R

E
S

S
_T

Y
P

E
E

X
P

R
E

S
S

_D
E

F
IN

E
D

_T
Y

P
E

O
W

N
E

R
S

H
IP

_C
O

D
E

C
O

L
U

M
N

_N
A

M
E

 S
E

Q
U

E
N

C
E

_N
U

M
B

E
R

B
_
S
P
L
I
N
E
_
C
U
R
V
E

L
O
C
A
L
_
C
O
O
R
D
I
N
A
T
E
_
S
Y
S
T
E
M
E
N
T
I
T
Y

C
O
O
R
D
I
N
A
T
E
_
S
Y
S
T
E
M

2
L
O
C
A
L
_
C
O
O
R
D
I
N
A
T
E
_
S
Y
S
T
E
M

1

B
_
S
P
L
I
N
E
_
C
U
R
V
E

A
X
I
S

E
N
T
I
T
Y

T
R
A
N
S
F
O
R
M
A
T
I
O
N

2

A
X
I
S

2

B
_
S
P
L
I
N
E
_
C
U
R
V
E

D
E
G
R
E
E

I
N
T
E
G
E
R

I
N
T
E
G
E
R

2

D
E
G
R
E
E

3

B
_
S
P
L
I
N
E
_
C
U
R
V
E

U
P
P
E
R
_
I
N
D
E
X
_
O
N
_
C
O
N
T
R
O
L
_
P
O
I
N
T
S

I
N
T
E
G
E
R

I
N
T
E
G
E
R

2
U
P
P
E
R
_
I
N
D
E
X
_
O
N
_
C
O
N
T
R
O
L
_
P
O
I
N
T
S

4

B
_
S
P
L
I
N
E
_
C
U
R
V
E

C
O
N
T
R
O
L
_
P
O
I
N
T
S

A
G
G
R
E
G
A
T
E

A
G
G
R
E
G
A
T
E

2

C
O
N
T
R
O
L
_
P
O
I
N
T
S

5

B
_
S
P
L
I
N
E
_
C
U
R
V
E

U
N
I
F
O
R
M

E
N
U
M
E
R
A
T
I
O
N

U
N
I
F
O
R
M
_
T
Y
P
E

2
U
N
I
F
O
R
M

6

B
_
S
P
L
I
N
E
_
C
U
R
V
E

U
P
P
E
R
_
I
N
D
E
X
_
O
N
_
K
N
O
T
S

I
N
T
E
G
E
R

I
N
T
E
G
E
R

2
U
P
P
E
R
_
I
N
D
E
X
_
O
N
_
K
N
O
T
S

7

B
_
S
P
L
I
N
E
_
C
U
R
V
E

K
N
O
T
_
M
U
L
T
I
P
L
I
C
I
T
I
E
S

A
G
G
R
E
G
A
T
E

A
G
G
R
E
G
A
T
E

2

K
N
O
T
_
M
U
L
T
I
P
L
I
C
I
T
I
E
S

8

B
_
S
P
L
I
N
E
_
C
U
R
V
E

K
N
O
T
S

A
G
G
R
E
G
A
T
E

A
G
G
R
E
G
A
T
E

2
N
O
T
S

9

B
_
S
P
L
I
N
E
_
C
U
R
V
E

W
E
I
G
H
T
S

A
G
G
R
E
G
A
T
E

A
G
G
R
E
G
A
T
E

2
W
E
I
G
H
T
S

1
0

B
_
S
P
L
I
N
E
_
C
U
R
V
E

F
O
R
M
_
N
U
M
B
E
R

E
N
U
M
E
R
A
T
I
O
N

B
_
S
P
L
I
N
E
_
C
U
R
V
E
_
F
O
R
M

2
F
O
R
M
_
N
U
M
B
E
R

1
1

B
_
S
P
L
I
N
E
_
C
U
R
V
E

S
E
L
F
_
I
N
T
E
R
S
E
C
T

B
O
O
L
E
A
N

T
R
U
E
_
F
A
L
S
E
_
O
R
_
U
N
D
E
F
I
N
E
D

2

S
E
L
F
_
I
N
T
E
R
S
E
C
T

1
2

The work described was funded by the United States Government, and is not subject to copyright.

A References

[Altemueller88a] Altemueller, J., The STEP File Structure, ISO TC184/SC4/WG1
Document N279, September, 1988

[Altemeuller88b] Altemeuller, J., Mapping from Express to Physical File Structure,
ISO TC184/SC4/WG1 Document N280, September, 1988

[ANSI86] American National Standards Institute, Database Language SQL,
Document ANSI X3.135-1986

[Clark90a] Clark, S. N., An Introduction to The NIST PDES Toolkit, NISTIR
4336, National Institute of Standards and Technology, Gaithersburg,
MD, May 1990

[Clark90b] Clark, S.N., Fed-X: The NIST Express Translator, NISTIR,
National Institute of Standards and Technology, Gaithersburg, MD,
forthcoming

[Clark90c] Clark, S.N., The NIST Working Form for STEP, NISTIR 4351,
National Institute of Standards and Technology, Gaithersburg, MD,
June 1990

[Clark90d] Clark, S.N., The NIST PDES Toolkit: Technical Fundamentals,
NISTIR 4335, National Institute of Standards and Technology,
Gaithersburg, MD, May 1990

[Clark90e] Clark, S.N., NIST Express Working Form Programmer’s Reference,
NISTIR, National Institute of Standards and Technology,
Gaithersburg, MD, forthcoming

[Metz89] Metz, W.P., and K.C. Morris, Translation of an Express Schema into
SQL, PDES Inc. internal document, November 1989

[Nickerson90] Nickerson, D., The NIST Database Loader: STEP Working Form to
SQL, NISTIR 4337, National Institute of Standards and
Technology, Gaithersburg, MD, May 1990

[Schenck89] Schenck, D., ed., Information Modeling Language Express:
Language Reference Manual, ISO TC184/SC4/WG1 Document
N362, May 1989

[Schenck90] Schenck, D., ed., Information Modeling Language Express:
Language Reference Manual, ISO TC184/SC4/WG1 Document
N466, March 1990

[Strouse90] Strouse, Kathleen and M. Mclay, PDES Testbed User’s Guide,
NISTIR, National Institute of Standards and Technology,
Gaithersburg, MD, forthcoming

Oracle is a registered trademark of Oracle Corporation

No approval or endorsement of any commercial product by the National Institute of Standards and Technology is
intended or implied

NATIONAL

TESTBED

Please send the following documents
and/or software:

Clark, S.N., An Introduction to The NIST PDES Toolkit

Clark, S.N., The NIST PDES Toolkit: Technical Fundamentals

Clark, S.N., Fed-X: The NIST Express Translator

Clark, S.N., The NIST Working Form for STEP

Clark, S.N., NIST Express Working Form Programmer’s Reference

Clark, S.N., NIST STEP Working Form Programmer’s Reference,

Clark, S.N., QDES User’s Guide

Clark, S.N., QDES Administrative Guide

Morris, K.C., Translating Express to SQL: A User’s Guide

Nickerson, D., The NIST SQL Database Loader: STEP Working Form to
SQL

Strouse, K., McLay, M., The PDES Testbed User Guide

OTHER (PLEASE SPECIFY)

ORDER and INFORMATION FORM

National Institute of Standards and Technology

Gaithersburg MD., 20899

Metrology Building, Rm-A127

Attn: Secretary National PDES Testbed

(301) 975-3508

MAIL TO:

These documents and corresponding software will be
available from NTIS in the future. When available, the
.NTIS ordering information will be forthcoming.

