
MODELING REQUIREMENTS FOR
SELF-INTEGRATING MANUFACTURING SYSTEMS

Peter Denno
National Institute of Standards and Technology, U.S.A.
Email: peter.denno@nist.gov

Keywords Self-integrating systems, Information Infrastructure, Self-describing systems

 Abstract This paper discusses modeling requirements to support self-integrating
manufacturing systems. Business process re-engineering, as it is currently
performed, is driven by the same information as may drive the re-engineering
process of future self-integrating systems. Unfortunately, today much of this
information remains unexpressed. On-going research into enterprise
representation may provide a foundation for self-integrating systems. However,
the modeling solution must make apparent mismatch of goals, function,
semantics and technology between the existing and future business processes
and information infrastructure.

1 INTRODUCTION

Self-integrating manufacturing systems (SIMS) is a new area of research,
so it is likely that there are various visions for what it should be. Some goals
that might be attributed to SIMS are: implementation of virtual enterprises,
supply chain integration, and plug-and-play factories [8]. At an extreme end
of the spectrum, dynamic relationships between functional entities may be
formed through resource brokering. From the standpoint of this paper,
however, rela tionships are relatively static and the goal is simply to reduce the
cost of business process re-engineering through automation of much of the re-
engineering activity. This goal is, of course, not unique and even some aspects
of the solution are not new [10], [2], [8]. For example, an essential aspect the
SMART [2] architecture is self-descriptive software components, that is,
components that provide a profile of their functional and interface
characteristics. These descriptions may be used by higher-order systems to
generate a middleware solution to inter-component communication.

This paper assumes that the integration process of self-integrating systems
will rely on a comprehensive enterprise model. An instantiation of the model
provides a context under which a self-describing component may be inte-
grated into the enterprise’s manufacturing operations. The processes and com-
ponents involved with integration, as envisioned, are illustrated in Figure 1..
As this figure suggests, the principle processes involved are (1) coherence
matching, that is, identifying the relationship between the activity performed
by the candidate software and the goals of the enterprise and (2) technical
reconciliation, that is, overcoming differences in protocol, semantics and
information structure. Both of these processes rely on the enterprise model,
which describes the goals, processes, organizational structure, resources,
interfaces and information entities that are subject to modification in a
business process re-engineering project. Enterprise models and modeling
disciplines such as identified by CIMOSA [1] and ARIS [11] identify much of
necessary content and methodology. However, in representing the relationship
among goals, agents and interfaces, self-integrating systems have an
additional requirement: it is necessary to make apparent the mismatch of
technology, semantics and function that may occur between the existing and
future work process. Whether integration of process is feasible, and whether
the technical and semantic differences can be bridged, depends on the
characterization of mismatch that can be made between the existing and future
enterprise model instances. The remainder of the paper provides a
characterization of the forms of mismatch after considering the aspects of
communication and context that gives rise to the mismatch.

2 INTEGRATION, COMMUNICATION AND CONTEXT

In this paper, integration refers to the performance of whatever is neces-
sary to enable agents (human or software) to communicate with each other in
support of a common goal. That is, integration is the enabling of useful com-
munication. Self-integration is integration where human intervention is not
required.

The principle challenge of self-integrating systems is that of getting com-
ponents to communicate with each other. Broadly speaking, an agent commu-
nicates with another for the purpose of influencing the behavior of the
recipient. There is no other purpose. With respect to communication among
humans in particular, the speaker, in choosing how to word his utterance,
must have in mind the recipient’s background knowledge and goals as well as
the environment (time and place) in which the utterance is to occur. Context is
a word for those things (background knowledge, recipient’s goals and
environment) the speaker must consider in designing an utterance.

The problem of communication is the problem of attending to context
well enough to design an utterance that achieves, through the recipient, a
desired behavior.

Enterprise Model

- Processes
- Organization Structure
- Goals
- Resources
- Interfaces
- Information Entities

Agent-Function / Org.-Task
Coherence Matching

Structural, Semantic and
Technical Reconciliation

New Enterprise
Model

- Processes
- Organization Structure
- Goals
- Resources
- Interfaces
- Information Entities

Differences

Organization’s
Instantiated

Information System

Candidate Software
- Self-description

New middleware,
integrating candidate
agent

This definition of integration, as well as the use of “communication”
applies as well to human agents as it does to software components. This is not
an accidental coincidence but rather a design requirement for self-integrating
systems. Because the mix of automation versus human endeavor varies from
organization to organization (and component integration often changes the
mix) it is valuable to have a language to model these notions that is neutral to
whether a human or an automaton is committed to the task.

The problem and challenge of self-integrating manufacturing systems
centers on the notion of context and the fact that the various, disparate compo-
nents that might play a role in the manufacturing enterprise were designed in
relative isolation; each built with a certain, idiosyncratic context in mind.
Whereas the notions of communication and integration are neutral to whether
human or automatons are involved, the notion of context is decidedly not. The
context in which software agents communicate is narrow and artificial, not the
‘lived experience’ that we must grapple with as communicating humans.
Context is, for the creator of artificial agents, a design problem; in communi-
cating software agents, the crucial design question is that of how agents estab-
lish a context for communication. Assuming that the designer of the agent did
not expect to exploit some unusual and extraordinary ability the agent might
possess to behave usefully in ambiguous circumstances, the narrowness and
artificiality of context among communicating agents is a fortunate accident.
This narrowness facilitates integration.

3 CONTEXT AND FORMS OF MISMATCH

Persons managing a manufacturing enterprise have the responsibility of
specifying the basic architecture of the enterprise. Broadly speaking, this
entails identifying goals, defining processes, committing resources, and
selecting systems for automating tasks. Through time, commitments of this
sort are revised to better address the changing business environment. With
respect to production equipment and software, management is faced with the
choice of (1) building its own solution to address the unique requirements that
management has imposed by other commitments, or (2) applying an existing
solution such as a commercial off-the-shelf (COTS) software package. The
latter is generally the less expensive choice, at least in terms of initial cost. It
is, increasingly, the more common choice.

When a choice is made to accomplish a task with commercial off-the-
shelf software, the enterprise is immediately faced with the difficulty that the
selected software was quite likely designed in relative isolation from this
enterprise’s commitments; that is, it was designed with a different context in

mind. The nature of the mismatch of context and how it may be expressed is
the subject of the remainder of this paper.

4 FORMS OF MISMATCH

Generally speaking, mismatch (to resemble or harmonize unsuitably or
inaccurately) applies to many forms of mismanagement: hiring the wrong per-
sons, providing him with conflicting or ambiguous goals and so on. However,
here the concern is specifically with the mismatch between components of the
enterprise’s architecture (component to component) and mismatch between
component function and agency goal (function to goal). Four forms of contex-
tual mismatch will be discussed: semantic, structural, functional and
technological mismatch.

4.1 Semantic mismatch

A principle challenge of system integration is that of identifying sense
differences that occur between information elements at points of communica-
tion. We envision that the self-description of an agent to be integrated would
include assertions regarding how its information elements relate to terms
defined by the enterprise model. In defining these terms the enterprise model
is arbitrarily authoritative (it must make some ontological commitment) as
there is no ultimate ground on which industrial terms might be founded.

An important design concern with regards to the definition of industrial
terms in the enterprise model (and even speaking more generally about lan-
guage [9]) is that meaning is a less useful notion than equivalence of meaning.
That is, it is more useful to know whether my notion of “part” is equivalent to
your notion of “detail”, your notion of “assembly” etc., than it is to know
what “part” is, in some fundamental sense.

The self-describing component may define relationship among the
information elements of its interface and the terms defined by the enterprise
model using sense relationships [3] and other characterizations of semantic
proximity [12]. These are discussed below.

Synonymy – having the same or nearly same meaning, substitutable
Hyponymy – taxonomy, ‘is kind of’ relationship, relating narrower
terms to broader terms
Antonymy – having opposite meaning. Crystal [3] identifies three
forms of antonymy that may be useful here: (1) gradable,
permitting the expression of degree, such as good/bad/very good;
(2) non-gradable, not permitting degree of contrast, such as

single/married; and (3) converse, two-way contrasts that are inter-
dependent, such as buy/sell
Incompatibility – terms that are “mutually exclusive members of the
same superordinate category” [3] such as red/green

Wiederhold [12] cites distinctions that follow from the encoding of infor-
mation:

Value semantics – the choice of threshold values where a quantity
takes on another meaning
Temporal grain – the quantum of time on which the value is based
(e.g. versus monthly salary)
Abstraction grain – a quantum (by some less fundamental metric
than time) on which the value is based (e.g. production by lot
versus monthly production)

The sort of distinction listed here are commonly found in an ontology (a
set of terms and definitions in a formal logical language which connect the
terms). We envision that the enterprise model would embody an ontology for
the purpose of relating the information elements of the self-describing
component to the terms of the enterprise model. The ontology can serve to
define the nature of the narrowing between hyponymous terms (e.g. through
membership predicates or other forms of constraint) for example.

4.2 Structural mismatch

Structural mismatch refers to differences in encoding or organization
between information entities whose semantics are similar. Resolving struc-
tural mismatch presupposes that semantic equivalence has been recognized. In
fact, structural mismatch often cannot be separated from semantic mismatch.
Value semantics, temporal grain and abstraction grain can be viewed as
structural problems arising out of the encoding of information, as they are
semantic discriminators. The important distinction between semantic and
structural mismatch is the manner in which it is addressed in the integration
process: structural mismatch may be resolved through the generated
middleware integrating the component or through an information mapping
engine such as Express-X [4].

4.3 Functional mismatch

Functional mismatch refers to the degree to which the behavior of an
agent fails to achieve an expected effect (an enterprise goal, presumably).
Functional mismatch is a concern first during the coherence matching process
where an assessment of the feasibility of using the agent can be made, and
second during technical reconciliation, where useful behaviors and results can
be isolated from useless ones. (‘Useful’ and ‘useless’ are assessments made
relative to the business context).

Concepts of function often rely on more general concepts of business
practice and business resources. As described above, we envision that these
later concepts and terminology would be addressed in the enterprise model.
Therefore the modeling of concepts of function are tightly coupled with
modeling of general enterprise terminology used in reconciling semantic
mismatch. We envision that much the same relationship would exist between
the component to be integrated and the enterprise model as it does in semantic
reconciliation, the enterprise model defines terms of function by which the
self-describing component describes itself.

4.4 Technical mismatch

Technical mismatch refers to differences in the software technology under
which components provide interfaces (e.g. CORBA, COM, message queues).
Components of the enterprise’s information infrastructure might communicate
through a framework (an architecture where components share a commu-
nication technology) or communication channels may be heterogeneous.
General consensus in middleware technology is unlikely in the near future.
For these reasons, self-integration will often involve bridging technical dis-
similarity. The enterprise model, therefore should possess the ability to recog-
nize the nature of the mismatch. Middleware technology can be categorized
roughly as based either on message passing or remote procedure calls [5]
subtle differences between technologies exists and must be made apparent.
The development of an ontology of software technology is perhaps the least
mature of requirements enabling self-integrating systems.

5 CONCLUSION

Self-integration, like business process re-engineering through traditional
means, requires reconciliation of differences in semantics, function, structure
and technology between the component to be integrated and the enterprise’s
existing information infrastructure. The complete context of the integration, as

is understood by business- and technically-minded analysts undertaking a
business process re-engineering project, involves aspect not traditionally sub-
ject to enterprise modeling. These include models of middleware technology,
enterprise goals and component (or agency) function. Development of these
aspects of the enterprise model defines a complete context for communication
between components of the enterprise, enabling self-integration.

Commercial equipment and materials are identified in order to adequately
specify certain procedures. In no case does such identification imply
recommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply that the materials or equipment identified are
necessarily the best available for the purpose.

[1] Amice, (editor) (1991). CIMOSA: Open System Architecture for CIM Springer-
Verlag, 2nd edition.
[2] Barry, J., et al. (1998) NIIIP-SMART: An Investigation of Distributed Object
Approaches to Suport MES Development and Deployment in a Virtual Enterprise. In
The Proceedings of The Second International Enterprise Distributed Computing
Workshop (EDOC98), 2-5 Nov.
[3] Crystal, D. (1997) The Cambridge Encyclopedia of Language Cambridge
University Press.
[4] Express-X (2000) Product data representation and exchange — Description
methods: Part 14: The Express-X Language Reference Manual. International
Organization for Standards, Committee Draft.
[5] Grasso, M., P. (2000). Getting the Message. Application Development Trends,
101communications, LLC, August.
[6] Hunt, V., D. (1996). Process Mapping : How to Reengineer Your Business
Processes, John Wiley & Sons.
 [7] Liebowitz, J. and Khosrowpour M. (1997). Cases on Information Technology
Management in Modern Organizations, Idea Group Publishing.
[8] NEMI, NEMI Homepage, http://www.nemi.org/
[9]Quine, Q. V. (1980) From a Logical Point of View : Nine Logico-Philosophical
Essays, Harvard University Press.
[10] RosettaNet, RosettaNet Homepage, http://www.rosettanet.org/
[11] Scheer, A.. W. (1998) Business Process Engineering Reference Models for
Industrial Enterprises, Springer-Verlag, Study edition.
[12] Wiederhold, G. (1992) Mediators in the Architecture of Future Information
Systems, IEEE Computer, March, 38-49.

