Automating Interactive Applications in a Network Environnment
by

Don Li bes

National Institute of Standards and Technol ogy

Gai t her sburg, MD

ABSTRACT

Many prograns demand to be run interactively. Wrd-processors
are

good exanpl es, but many network applications (e.g., ftp, telnet)
share

the sane fault. They cannot be run non-interactively.

Expect is a software tool designed to control interactive

pr ogr ans.

Expect reads a script that resenbles the dialogue itself but
whi ch may

include nmultiple paths through it. Expect can run any program
| ocal l'y

or renptely in order to automate a task

Expect successfully deals with interactive prograns and is
particularly useful in a networked environnent in which

di ssim | ar

machi nes nust conmmuni cate. Expect solves the problemof "stick
t he

password in the script" as well as several other |ong-standing
problems with traditional work-arounds in these areas. Expect
al so

provi des the needed support for regression testing, network and
conput er | oad generation, and conformance testing in a networked
envi ronment .

In practice, Expect has entirely relieved numerous conputer
scientists

and network managers of tasks that previously had to be perforned
by

hand. The investnent in witing Expect scripts is a mninm
one-tine

cost. Expect is free and in the public domain. Expect is in use
in

hundreds of conpanies and universities in the U S. and overseas.
Keywor ds: automation; conmruni cation; Expect; interaction;

net wor k;
Tcl; Tool Control Language

[End of abstract]

Footnote 1: Contribution of the U S. Governnment. Not subject to
copyri ght.

Footnote 2: Trade nanes and conpany products are nentioned in the
t ext
in order to adequately specify experinental procedures and

equi pnent _
used. In no case does such identification inply reconmendation
or

endorsenment by the National Institute of Standards and
Technol ogy, nor

does it inply that the products are necessarily the best
avai | abl e for

t he purpose.

| NTRODUCTI ON

Many prograns are designed strictly for interactive use. W cal
such

prograns "unautonmateable”. Editors are good exanples, but many
network applications (e.g., ftp, telnet) share the sane
characteristic.

Tradi tional scripting solutions, such as shells, command
processors,

and nore specialized tools such as Kermt, are significantly
[imted

in capability. For exanple, shells are restricted to very
l[imted

programm ng, such as straight-line algorithnms because they cannot
performerror checking frominteractive programs. Kermt-I|ike
progranms are designed specifically for comuni cations on

si ngl e-taski ng systens and do not take advantage of | ocal
software or

non- st andard | ocal conmuni cation interfaces.

In contrast, the research into Expect focused on the issues
related to _
buil ding a | anguage for describing interaction. The result is a
very

general tool which surpasses older, traditional solutions.

Expect is a comuni cation-i ndependent system It has a single
generic

interface for interacting with processes. Thus, Expect can nake
use

of tools you have already. For exanple, if you have a security
system

or device driver or user interface, Expect will use it. Expect
does

not replace anything that you already have. It is sinply a

fl exible

and general, high-level control system

Expect provides partial automation as well. It can automate part
gL interaction and then et a human take over the interaction.
gg;nple, Expect can nake all the network connections, and let the
?;g; t he password. Then Expect can take control again and finish
}Qg_ Control can be passed back and forth.

I NNOVATI ON
Expect was the cross-product of the follow ng three concepts:
* a standard control |anguage (Tcl) [2],

* an appropriate set of concepts for interaction description and
their inplenentation in Tcl,

* the ability to mani pul ate other processes in a multitasking
envi ronment .

Unli ke the traditional approaches, Expect stays away from

building in

specific I/Ointerfaces. Instead, Expect calls upon interactive
and

non-interactive processes that already exist. Expect has
specific

support for interaction and can thus drive prograns in any way
necessary.

This has several benefits:

* Expect does not need to be configured for each system

* Expect can automatically use any I/Ointerface on a system

* Expect can control nultiple processes and I/ 0O sinultaneously.

For exanpl e, Expect can create a connection to a renote system
t hat

uses an inconpatible mail system retrieve new mail back to the
original system (or even a third systen), and nmeke it appear as
if the

two systens were conpatible at a nmuch higher |evel than they
really

are.

| MPLEMENTATI ON

This section briefly describes the inplenmention of Expect. A
conpl ete
description is provided by [1].

Tcl - Tool Control Language

The Tcl core consists of control flow statenents such as whil e,
if/then, and others. Tcl supports procedure definition,
recur si on,

scoping, and simlar high-level functionality. Progranms may be
call ed

and files mani pul ated. Expression evaluation is provided by
primtives that manipulate the only primtive type - strings.
(Conversion to and fromother types is perfornmed automatically, a
I a

SNOBOQL.)

The salient features of Tcl are that it is:
* sinple - It is expected that nost Tcl programs will be short.

* programmable - Tcl applications are general -purpose and are not
known i n advance.

* efficiently interpreted - Tcl nust be able to execute commands
qui ckly enough that user interaction is not noticeably inpeded.
(Tcl

itself is witten in C)

* internally interfaceable to other |anguages - Tcl nust allow
one to

add new commands that work synergistically with existing Tcl
conmands.

As the last bullet says, Tcl is designed to allow the addition of
new

commands. Expect adds twenty-seven commands to the Tcl |anguage.
Tcl

is defined by [2][3]. Expect is defined by [4]. Briefly, Expect
provi des:

* send/ expect sequences - "expect" patterns can include regul ar
expressi ons.

* standard, high-1level |anguage - Control flow (if/then/else,
whi | e,

etc.) allows different actions on different inputs, along with
procedure definition, built-in expression evaluation, and
execution of

arbitrary prograns.

* job control - Miltiple prograns can be controlled at the sane
tine.

* user interaction - Control can be passed from scripted to
interactive

node and vice versa at any tine. The user can also be treated as
an

| / O sourcel/sink
Expect library

Wi | e Expect was bei ng devel oped, Tcl provided a workbench with
whi ch

to experiment. Wiile Tcl suffices for nost Expect use, it is
possi bl e

to code directly in a conpiled | anguage. Expect cones with

i nterfaces

to Cand C++. It is straightforward to interface to additional
| anguages.

Mul titasking, Pseudo-ttys

Expect requires a host systembe multitasking. This is necessary
B?der for Expect to start other processes to work for it (nuch
L;ﬁgggr coordi nates subordinates). Systens such as UN X, VM5,
%E?Z are nmultitasking, while DOS is not.

Expect conmmuni cates with other processes using a technique
conmonl y

referred to as "pseudo-ttys" or "virtual termnals". A
pseudo-tty is

a logical abstraction of the hardware interface required to
support

interaction with a human, such as a keyboard and screen.

Pseudo-ttys allow prograns to run unchanged even though they are
not

tal king to physical hardware. Operations such as clearing the
screen

are not physically perforned, but are nonetheless allowed and
represented in the logical interface. Expect can thus detect
when a

program has requested or conpleted an I/ O operation

Combi ni ng these concepts provides the basis for Expect. A sinple
application is presented in figure 1. Under the direction of a
script, Expect conmmunicates with interactive prograns as if it
were a

real person. Expect does this by internally spawning the process
to be

controlled. The I/O of the spawned process is then managed by
Expect

according to the script (figure l1a). Expect allows a person to
t ake

control fromthe script and return control at will (figure 1b).

PASTE FI GURE 1 I N HERE

Expect can also treat the real person like a process, thereby
al I owi ng

the person to deal with a greatly sinplified interaction. Any
nunber

of processes may be controlled. Figure 2 shows a typi cal
instantiation with the person being treated as a process.

PASTE FI GURE 2 | N HERE

RESULTS

This section will briefly describe sone performance aspects of
Expect .

* Expect drives prograns very quickly. In conparison to humans,
response is instantaneous. Actual neasurenents of tine and
program

size are described in [1] and [5].

* Expect never forgets a step. For instance, regression testing
Lgry boring for humans. Once they have done a procedure before,

Lﬂgxlthat nost of the tine they ' re not going to see anything new.
It’s not surprising that they inadvertently skip tests. Expect’s
?ﬁeregression testing is described further in [6]

* Expect maintains security. Gven a password, it will not
record it

anywhere. Thus, passwords cannot be exposed. Nor will a
password be

forgotten (unless it is so directed).

In practice, nost Expect prograns are relatively small. Many

pr obl ens

can be solved with only five to ten |lines of Expect commands.
Nonet hel ess, large prograns are witten, and the | anguage scal es
wel | .

Learning how to use Expect is conparable to | earning how to use

any
hi gh-1 evel |anguage. It is possible to code applications in a
matter

of mnutes. The nost difficult part of any Expect task is
getting a

cl ear specification of another program s user interface. For

exanpl e,

while the Departnent of Defense File Transfer Protocol (FTP) is
clearly specified, its corresponding user interface is quite
vague,

and inpl ementati ons vary w dely.

It is difficult to describe Expect w thout using superlatives.

| ndeed, the project has received hundreds of letters of thanks
from

national and international users. The number of notes received
is

remarkably |l arge, particularly in view of the fact that users are
under no obligation to wite to the devel oper since Expect is
free.

Expect can be applied to many problens [6][7], although this

paper
will only nention the narrow subset of interest to this audience.
Here are sone of the Expect applications and advant ages that

i npact

net wor ki ng and communi cations. All of the applications described
bel ow have been i npl enent ed.

* Load Ceneration - Expect can be used to generate network or
conput er
| oads. This is useful in prototyping or pre-purchase network
t esting.

* Quality Assurance & Conformance Testing - Expect can run two
prograns sinultaneously (or one against a standard) conparing

out puts

and timngs for descrepancies. This is useful when verifying a
new

version of a programor interface functions the same as an old
version. Regression and conformance testing are the core of nuch
Expect use. See [6][8] for nore detail.

* Faster, Easier Debugging - Expect can |ayer programmbility
onto a

debugger, a network managenent tool, or any program Mbst
prograns do

not provide general programuser interfaces. Expect provides a
common

programm ng interface to any extant tools.

* Faster Diagnostics - Expect scripts can be witten to simulate
everything that a user mght do - for exanple, opening a
connection to

an out - bound nodem goi ng through several sw tches, back through
an

i n-bound nbdem several |ogins and several applications. By
testing

t hese sequences frequently, we learn about and fix faults well
bef ore

users have a chance to stunble onto them

* Better Security - Expect scripts can automate everything except
typing in passwords, allow ng nmanagers to know passwords but not
wor ry

about any of the technical responsibilities of them Passwords

can be

bat ched, so that the passwords are entered at programinitiation,
but

used nuch later. This works very well with all traditional
security

systens such as M T s Kerberos.

* Password Mai ntenance - An Expect script can change passwords
for a

user who has accounts on nultiple machi nes. The user types the
password once, while Expect does the rest. This reduces the
possibility of accounts ending up with differing passwords.

* Security Testing - Expect scripts can sinulate humans to test
prograns that are intentionally designed to be non-interactive.
Expect scripts can sinulate hackers trying nunmerous passwords and
techniques to break into a system

* Network and Host Integration - |If Expect runs on one system it
can

contact another systemon which to work. For exanple, we have
Expect

controlling VM5, Cray, and Lisp Machines froma single UN X
wor kstation. Renote systens do not have to run Expect.

* Presentation-|level Conversions - Witing real network protocol
drivers for non-standard protocols is expensive. It is possible
to

wite Expect translators in mnutes, that work in real-tine.

* Localize Renote Peripherals - Expect scripts can encode
conmands to

connect to renote hosts and open renote devices, providing
subsequent

access as if they were | ocal.

PLANNED ENHANCEMENTS
Porting

Currently, Expect runs on UNI X machines. It also runs on

machi nes

fromsmall platfornms (Intel 386) to superconputers (Cray). W
know of

people running it on approximately 50 different vendors’ brands
of

UNI X.

We anticipate ports to VM5, OS/2, and other nultitasking
operating

systenms in the near future. Al of the environnments already
provi de

t he base functionality that Expect depends upon.

W ndows

Expect does not currently provide support for generalized

bi t mpped

w ndow systens. Several researchers are studying this area with
experinmental versions of Expect.

Avai l ability

Since the design and inplenentati on of Expect was paid for by the
u. S.

governnent, it is in the public domain. However, the author and
NI ST

would i ke credit if this program docunentation or portions of
t hem

are used. Expect may be ftp d as pub/expect/expect.shar.Z from
ftp.cme.nist.gov. Expect will be mailed to you, if you send the
mai

message (no subject) send pub/expect/expect.shar.Z to

i brary@ne. ni st. gov.

REFERENCES

[1] Libes, Don, "Expect: Curing Those Uncontrollable Fits of

I nteraction”,

paper and presentation, Proceedings of the Sumer 1990 USEN X
Conf erence, Anaheim California, June 11-15, 1990.

[2] Qusterhout, John, "Tcl: An Enbeddabl e Command Language",

Pr oceedi ngs

of the Wnter 1990 USEN X Conference, Washington, D.C., January
22- 26,

1990.

[3] Qusterhout, John, "tcl(3) - overview of tool command | anguage
facilities", unpublished manual page, University of California at
Ber kel ey, January 1990.

[4] Libes, Don, "The Expect User Manual - progranmmatic di al ogue
with

interactive prograns", to appear as a NIST IR National Institute
of

St andar ds and Technol ogy, 1992.

[5] Libes, Don, "Expect: Scripts for Controlling Interactive
Processes"”,

Computing Systems, Vol. 4, No. 2, University of California Press
Jour nal s, Novenber 1991

[6] Libes, D. "Regression Testing and Confornmance Testing
I nteractive

Prograns”, Proceedings of the Summer 1992 USEN X Conference, San
Antoni o, Texas, June 12-15, 1992.

[7] Libes, Don, "Using Expect to Autonmate System Adm nistration
Tasks", paper and presentation, Proceedings of the Fourth USEN X
Lar ge

Installation Systens Admi nistration Conference, Col orado Springs,
Col orado, Cctober 17-19, 1990.

[8] Wbodson, Brian, "Regression Testing Using Expect”, Quality In
Software Conference, Santa Clara Valley Software Quality
Assocati on,

June 29, 1991.

