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Executive Summary

Introduction

As industrial equipment becomes more sophisticated, computers and communications
more powerful, and robots more capable, the need for a method of unifying diverse
machines into coherent systems becomes increasingly urgent. The unification of
diverse systems can be accomplished using a machine control system architecture.
Without the consistent approach provided by an architecture, integrating variegated
equipment into a system that does useful work is a tedious, labor-intensive, error-prone
undertaking. Despite the wide acknowledgment of the benefits of a widely applicable
machine control architecture and the development of many specific machine control
architectures, no broadly applicable architecture has gained widespread acceptance.

To address the need for a widely applicable and broadly accepted machine control
architecture, the Robot Systems Division (RSD) and the Factory Automation Systems
Division (FASD), branches of the Manufacturing Engineering Laboratory at the
National Institute of Standards and Technology (NIST) have been developing and
experimenting with architectures for more than sixteen years. This work indicates that
there are aspects of control which are common to all control systems in a broad range
of applications. These aspects have been captured in a number of control system
reference architectures, most particularly the Real-Time Control System (RCS)
architecture and the Manufacturing Systems Integration (MSI) architecture. These
architectures share many common elements, but there are also some differences.

RSD and FASD are engaged in a joint project to assess the feasibility of formulating a
single reference architecture and to outline the architecture. This report is written
primarily for the team of researchers charged with developing the joint architecture.
The report strives to provide team members with an understanding of the basis on which
RCS and MSI were compared, a list of technical issues, a framework for developing the
joint architecture, and references to existing work on architectures. The report also
provides a preliminary sketch of a joint architecture useful for the applications
considered in RSD and FASD. It is expected that such an architecture will be applicable
in a wider range of applications besides those considered by RSD and FASD, as well.

Sections 1 and 2 of this report provide an Introduction and Preliminary Definitions. In
section 3 we discuss the Definition of an Architecture, giving five elements required for
the specification of an architecture. Using these elements, sections 4 and 5 discuss
General Architecture issues and Control Architecture Issues, respectively. Section 6
characterizes types of architectures and describes several architectures other than RCS
and MSI, to illustrate each type. Section 7 describes the RCS and MSI architectures and
assesses their compatibility. A more detailed comparison of the two architectures is
given in appendix C. Section 8 outlines the proposed single reference architecture.
Section 9 gives conclusions regarding the comparison of architectures, and the
formulation of reference architectures. Additional appendices provide a glossary of
terms, an annotated bibliography, a list of general architecture issues and control
architecture issues, and more.
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Definition of an Architecture

The definition of an architecture involves tiers of architectural definition and elements
of architectural definition.

Tiers of Architectural Definition

An architecture consists of elements which are more or less concrete. A grouping in
which all elements have similar concreteness is called a tier of architectural definition.
If we were talking about the architecture of houses, such concepts as surfaces to walk
on and load bearing systems might appear at a high tier of architectural definition, while
particularizations of these concepts, such as wooden floors to walk on and post-and-
beam construction for bearing loads would appear at a lower tier.

In general, the elements defined at a less concrete tier of architectural definition will be

more generally applicable than those which are more concrete. Specifying an

architecture using several tiers enables the architecture developers to indicate which
parts of the specification are intended to be broadly applicable and which are not.

Elements of an Architecture

At each tier of architectural definition, the definition of an architecture consists of
specifying five elements of architectural definition. These are:

» statement of scope and purpose,

e domain analyses,

» architectural specification,

* methodology for architectural development, and
» conformance criteria.

The statement of the scope and purpose of an architecture describes the range of
application areas to which the architecture is intended to apply and the general
objectives of having an architecture for those areas.

The area of potential application for an architecture is termed its domain. A domain
analysis is a systematic examination of the target domain to reveal its essential
elements. Commonly used forms of domain analysis are functional analysis,
information analysis, and dynamic analysis.

An architectural specification is a prescription of what the pieces (software, languages,
execution models, controller models, communications models, computer hardware,
machinery, etc.) of an architecture are, how they are connected (logically and
physically), and how they interact. The architectural specification is the heart of a
machine control system architecture.

A methodology for architectural development is a set of procedures for applying an
architecture to an application domain. The architectural specification describes what
you are trying to build, and the methodology tells how you build it.
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Conformance criteria specify how an element of an architecture is judged to conform
to the architecture. Conformance criteria may apply to elements of architectural
specification or to methodologies for architectural development.

Issues

Over 30 pages of the report are devoted to the initial presentation of dozens of issues.
There is no reason to single out a few and no brief way to state them all, so this
executive summary simply categorizes, summarizes, or names them. Appendix B is a
listing of the issues without explanation. Architecture issues are divided into two sets:
general architecture issues and control architecture issues.

General Architecture issues

The general architecture issues are organized around the elements of architectural
definition listed earlier.

The scope of an architecture may be characterized by its extent in several different
dimensions: application domain, life cycle, organizational extent, and tiers of
architectural definition.

Domain analyses for an architecture should cover functional, information, and dynamic
aspects. Appropriate methodologies for conducting the analyses must be used.

Architectural specification issues include: component balance, granularity, architecture
definition languages, and a set of miscellany at the lowest tier of architectural definition
(hardware, operating system, and processes).

Methodology issues include the use of cyclic development, the use of CASE tools, and
the question of how to map architectural components onto software and hardware
components at the lowest tier of architectural definition.

Conformance issues include: conformance testing methods, the usefulness of
conformance testing, whether conformance to methodologies for architectural
development should be required, how conformance classes might be used, and
providing for non-conformance.

Control Architecture Issues

One large set of issues concerns the nature of individual controllers: their functionality,
operational states, operational modes, internal workings, interactions with humans, and
so forth.

Other sets of issues concern:

* how collections of controllers interact,

* how to specify, generate, and execute tasks,

» what data is required for control and what data handling architecture
is suitable for dealing with the data,

* how to provide for process planning, scheduling, and resource
allocation,
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* how to provide for communications among the components of a
control system,

* how to incorporate checks and safeguards in control systems and how
to provide for recovering from errors.

Sixteen desirable characteristics of a control architecture have been identified. There is
general agreement about what is desirable, although not how to achieve it. Achieving
one desirable characteristic may help or hinder in achieving another.

Types of Architectures

There is general agreement that three aspects of control system architectures are
important: control, communications, and information. These aspects are largely
independent but must be integrated for a control system to be effective. Most
architectures reviewed for this report focus on the control aspect, but several emphasize
information.

Four commonly discussed types of control architecture are: centralized, hierarchical,

modified hierarchical, and heterarchical. RCS, MSI, and the proposed joint architecture

are all hierarchical. The hallmark of a hierarchical control architecture, of course, is that

controllers are arranged in a hierarchy. In the MSI and RCS architectures, controllers

are arranged in a special type of hierarchy in which each controller has one superior and
zero to many subordinates. Controllers interact through a command-and-status
protocol.

RCS and MSI

To prepare for formulating a joint architecture, RCS and MSI were studied, and their
compatibility was assessed.

RCS

RCS is an architecture for complex, integrated machine control systems which work in
a changing world and keep pace with changes in real time. RCS is intended for
applications as diverse as space robotics and discrete parts manufacturing. The
elements of an RCS system that do information processing are: sensory processing,
world modeling, value judgment, and behavior generation.

The sensory processing function of an RCS system takes sensory data at the lowest
hierarchical level, interprets the data, and passes the interpreted data to world modeling.

The world modeling function serves to keep a description of the state of the world. It
receives information from sensory processing for updating the world model. It also
predicts events and sensory data and answers questions about the world model.

The behavior generation system in RCS is strictly hierarchical. That is, each controller
responsible for behavior generation has one superior and zero to many subordinates, for
the purposes of performing actions. Superiors interact with subordinates by sending

\Y
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commands to them and receiving status messages from them. Each controller has a
number of tasks that it can carry out, and these tasks are understood by the superior of
the controller.

The RCS architecture decomposes system activities into hierarchical levels. The levels
are characterized by the relative amount of time taken to perform activities and by the
relative spatial extent of the activities. Roughly an order of magnitude change in
temporal and spatial extent is expected between any two adjacent levels, with activities
getting faster and more localized at the lower levels.

MSI

The goal of the MSI architecture is to integrate the operation of a shop which
manufactures discrete metal parts. Particular emphasis is placed by the architecture on
the integration of shop planning, scheduling, and control functions in both nominal and
error situations. The architecture approaches integration by identifying the systems in
the shop which need to be integrated, examining the interactions among the systems,
and proposing mechanisms to ensure that these systems function in a cohesive manner.

For systems which interact directly, the MSI architecture defines an architectural unit
called a control entity, which consists of a planner and its associated controller. The
planner in the control entity is required to support scheduling of plans and may support
process planning and batching. The controller in the control entity must support task
execution. The controllers interact through hierarchical control. A mechanism for
external intelligent intervention, called a guardian, is included in the MSI architecture.
A control entity may have as many as five types of interfaces: a planning interface, a
controller interface, a guardian to planning interface, a guardian to controller interface,
and a planner to controller interface. The MSI architecture can be used with a
centralized or a distributed planner, and other combinations of control and planning
systems.

For systems which interact indirectly, the MSI architecture specifies that it is sufficient
to describe the shared information at a conceptual level and provide guidelines for the
access of the information. The description of the shared information is given through a
number of information models. The information models and the guidelines for
information access form the information architecture of MSI. Three of the most
important information models in MSI are the Integrated Production Planning
Information Model, which describes the manufacturing environment at a high level of
abstraction, the Process Plan Model, and the Production Plan Model. Process and
production plans are key vehicles by which information is shared between planning and
control systems in the MSI architecture. MSI defines six other information models, as
well. Data access guidelines include, for example, the requirement that information
which must be shared among systems be placed in a data repository where it is possible
for all systems which need this information to access it.

vii
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Compatibility Assessment

RCS and MSI are different enough that a system built with the RCS architecture cannot
be expected to be interoperable with one built with the MSI architecture. Many of the
differences, however, are the result of differing application requirements. MSl and RCS
strengths and weaknesses complement each other. RCS provides for real-time control
and operation in a range of environments, from the highly structured to the highly
unstructured, which may be highly variable. MSI provides for a high degree of
integration of planning, scheduling and resource allocation. MSI specifically addresses
error-recovery for resource problems, scheduling difficulties and task failure. It appears
to be feasible to define an architecture combining the strengths of RCS and MSI.

Proposed Architecture

An outline of a specific proposed architecture is given in this report. An effort involving
a larger group of people from RSD and FASD has begun to define a joint architecture
fully. That group is not bound by the outline given here, which is given as a starting
point. This executive summary summarizes the outline.

The proposed architecture has four tiers of architectural definition:

a domain-independent, application-independent tier (tier one),
a domain-specific, application-independent tier (tier two),

a domain-specific, application-specific tier (tier three),

an implementation tier (tier four).

At each tier of architectural definition, all five elements of an architecture are
considered. The lowest tier is not discussed further, as it consists of implementations of
the architecture to be built in the future.

The first tier gives many of the guidelines necessary to construct a control system. It is
assumed the system being controlled must interact with its environment and react to
unpredicted changes in the environment. At this tier, the architecture is intended to be
applicable to (at least) factories, robots, autonomous vehicles, construction machines,
and mining machines.

The second tier of architectural definition is recommended to be focused on discrete
parts manufacturing. This is an important, broad domain requiring the features of
existing RSD and FASD architectures, particularly real-time control and integration of

control with planning, scheduling, and other required functions.

Tier three, which is domain-specific and application-specific, but is not an
implementation, is not delineated further in this report.

viii
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Conclusion

This report provides a clear definition of an architecture, delineates important issues
concerning architectures for machine control systems, presents a sampling of existing
architectures, compares the MSI and RCS architectures, concludes that an architecture
combining the strengths of MSI and RCS is feasible, and outlines a proposed joint
architecture for RSD and FASD. Completing the proposed architecture will require a
great deal of work, but the end result will be an architecture which fills the needs for
real-time control and information integration.
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Introduction

As automation of manufacturing systems becomes commonplace, the design,
construction, and use of computerized control systems has become an increasingly vital
problem. Computerized control systems are typically large, complex systems that are
composed of components of lesser complexity which are developed and validated
separately.

In a manufacturing environment, components are diverse systems such as production
machinery, communications software and hardware, computer hardware, databases,
file systems, and production management software.

The purpose of a control architecture is to enable these components to work together in
an integrated way to give satisfactory product quality at a reasonable price. At present,
for each distinct set of components, a systems integrator defines a unique control
architecture. This approach to developing control architectures is expensive, time-
consuming and makes diagnosis of system problems difficult. The creation of a control
architecture which can be applied to classes of machine control systems—a reference
architecture—is therefore highly desirable.

Benefits of Reference Architectures

As United States manufacturing continues to lose market share in the global market, it
is apparent that the manufacturing industry must reduce its costs to be competitive.
Consequently, significant effort is being devoted to making manufacturing in the
United States more cost-effective.

The Manufacturing Systems Committee of the Department of Defense Manufacturing
Technology (DoD ManTech) Advisory Group has recently released a report [Plonsky1]
which analyses the distribution of the costs in the manufacturing of defense materials
and proposes a plan for focusing ManTech-funded research on specific technical areas
to reduce the cost of manufacturing to DoD. While the report focuses upon defense
production, the findings of this report regarding costs in the manufacturing
environment and technical strategies for reducing costs are relevant to all consumers of
manufactured goods.

The report states that, in order to reduce overall manufacturing costs, technology must
be developed and deployed that:

(1) produces manufacturing systems that can efficiently make a wide variety of
products which are produced in small numbers,

(2) permits the rapid realization of new products.

Since costs involved in the planning, scheduling, and control of factory and supplier
processes and operations, the manufacturing support costs, comprise approximately
37% of a manufacturing company’s cost, technologies which reduce these present a
substantial opportunity for cost savings.

The study advocates a number of technical strategies to achieve the desired cost-
savings. Among these are:
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(1) the integration of multi-vendor information systems for customers, vendors
and suppliers (enterprise integration),

(2) the development of systems which streamline, automate and integrate
manufacturing management (command, control, and communicatiof)s—C

(3) the development of a comprehensive system for creating quality products
(quality management).

The technical barriers for the implementation of these strategies include:
(1) the lack of an information architecture (enterprise integration),
(2) the lack of integration methodologieﬂc

(3) the lack of manufacturing and industrial engineering support todis (C
guality management).

A reference architecture, which provides the framework for components of a complex
control system to work together as a whole rather than as a disjoint set, encompasses
both information architecture and integration methodologies. Furthermore, a reference
architecture can promote the development of interoperable support tools.

In the manufacturing environment, different components of the control system are
made by different vendors and are designed to work with humans, but not with other
automated systems. Typically, a reference architecture specifies integration rules and
standard interfaces among components. By adhering to the standard interfaces and
integration rules required by the architecture, different vendors can construct
components which are interoperable. Using the interoperable components and system
integration rules and methods, components may be integrated to build a machine,
groups of machines and people can be integrated to form a workstation, workstations
may be integrated to form cells and so on, to any degree of complexity desired. The
availability of a reference architecture which defines interoperable components can
improve the flexibility, timeliness, reliability, safety and extensibility of control
systems.

Once a reference architecture is available which can serve as a standard, tools for
building control systems can be constructed and applied, and a body of knowledge
about how to apply the architecture can be built. Public availability of the architecture,
tools and the knowledge of how to apply them to real-world control problems will
greatly reduce the time and cost required for building military and commercial control
systems.

Reference Architectures at NIST

The Manufacturing Engineering Laboratory (MEL) at the National Institute of
Standards and Technology (NIST) is conducting research on control of mechanical
systems for use in such diverse fields as discrete parts manufacturing, coal mining,
under-ice submarining, and space exploration.
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As a result of differing requirements in each domain, the characteristics of control
systems vary greatly. Nevertheless, more than sixteen years of experience within the
Robot Systems Division (RSD) and the Factory Automation Systems Division (FASD)
of MEL indicate that there are aspects of control which are common to all control
systems in a broad range of domains. These aspects have been captured in a number of
control system reference architectures that provide both specifications for the parts of
the architecture and their behaviors and methodologies for constructing control systems
according to the prescribed specifications. One class of reference architecture
(developed by RSD) is the Real-Time Control System (RCS) architecture [Albusl],
[Albus2], [Albus3], [Albus5], [Barberal], [Hermanl], [Quintero3] and specializations

of it, such as the NASA/NBS Standard Reference Model for Telerobot Control System
Architecture (NASREM) [Albus4]. FASD reference architectures include the
Automated Manufacturing Research Facility (AMRF) control architecture [Jones2],
[Jones5], [McLeanl], [Simpsonl] and the Manufacturing Systems Integration (MSI)
architecture [Senehi2], [Senehi3], [Wallacel].

The architectures under active investigation in RSD and FASD share many common
features. For example, all consist of a set of controllers arranged in a command
hierarchy. In all the architectures each type of controller has its own specialized set of
commands it can carry out. All the architectures implement command execution by
message passing between controllers, and so forth. But there are also some differences.
Timing issues and sensory processing receive more attention in RSD architectures,
information integration, scheduling and resource definition issues more in FASD
architectures.

An assessment of the feasibility of formulating a single reference architecture using the
RCS and MSI architectures has been performed, and it has been determined that such
an architecture is possible. RSD and FASD are engaged in a joint project to outline an
architecture which includes features of both RCS and MSI. It is expected that such an
architecture will be applicable in a wide domain beyond that of the two NIST divisions.

About This Report

This report documents the work performed in assessing the feasibility of combining the
RCS and MSI architectures into a single reference architecture. The report is written
primarily for the team of researchers charged with developing the joint architecture.
The report strives to provide team members with:

(1) an understanding of the basis on which the two architectures were compared
and found to be compatible,

(2) a preliminary list of the technical issues which need to be resolved in
formulating a joint architecture,

(3) aframework for developing the joint architecture,
(4) apreliminary sketch of the joint architecture, and
(5) references to existing work on architectures.
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The report is not intended as a tutorial and assumes considerable familiarity with
control architectures and manufacturing.

Feasibility Assessment Process

In order to assess the feasibility of combining RSD and FASD architectures, the authors
first examined approximately one hundred papers about the RSD and FASD
architectures, externally developed architectures, and frameworks for architectures.
The primary goals of this literature search were to assist the authors in developing a
framework for comparing the two architectures and to understand how the NIST
architectures relate to other architectures. The literature search was not intended to be
comprehensive, but an attempt was made to obtain a wide cross-section of papers on
architectures.

The review of the control architecture literature revealed that architectures tend to vary
widely in content and emphasis. The authors did not find standard terminology for

discussing control architectures, or a standard framework for comparing architectures
which was mature enough for immediate use.

To remedy this situation, the authors developed a terminology with which to discuss
both architectures and defined a framework for discussing and comparing the two
architectures. Using this terminology and framework, the authors developed a set of
issues which must be addressed when constructing the joint architecture.

The authors then performed a comparison of RCS and MSI on every issue and
combined these results to formulate the conclusion that a joint reference architecture is
indeed feasible. Finally, the authors generated an initial formulation of the contents of

the joint architecture.

Feasibility Report

The order of the feasibility report differs somewhat from the order in which the work
itself was performed. The report presents a more unified view of the conclusions and
results of the work than would otherwise have been possible. Sections of the report
summarize several key aspects of the work, particularly the issue by issue comparison
of RCS and MSI and the results of the literature survey.

Section 2 presents terminology used in the remainder of the report for discussing
control architectures. In Section 3, we describe our framework for architectures. Using
this framework, we then discuss (Section 4) general architecture issues relevant to any
architecture, not just to architectures for control systems. In Section 5, we narrow our
focus to issues pertaining to control architectures. There is some overlap between the
issues in Section 4 and those in Section 5. Many issues are clearly in one section or the
other, but a few could have been placed in either section. Section 6 discusses
classifications of architectures and describes several architectures other than RCS and
MSI to illustrate each type. Section 7 describes the RCS architecture from RSD, the
MSI architecture from FASD, and assesses the compatibility of RCS and MSI. A more
detailed comparison of the two architectures is given in Appendix C, using the issues
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identified in Section 4 and Section 5. Appendix B presents a list of all the issues without
discussion, for easy reference. Appendix F presents issues which apply primarily to the
RSD architectures.

Section 8 outlines a proposed single reference architecture.

Section 9 gives conclusions regarding the comparison of architectures, and the
formulation of reference architectures.

A list of all papers cited in this report is given in the list of references following Section
9. A review of the literature, listing the papers read and the authors’ summaries and
comments on them is in Appendix D.

Appendix B gives a glossary of terms applicable within this report. Although generated
as a result of the literature search, in many cases there is no generally accepted
definition for commonly used terms. For these terms, the authors have selected one or
more commonly used definitions. No attempt has been made to define every use of each
term.
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Preliminary Definitions

In this report, we will use a number of terms which have a variety of meanings in the
manufacturing setting. Although an international standards effort is underway to
produce a standard terminology, results of this effort are not yet mature enough for use
[ISO4]. To clarify this situation, we give definitions for terms as they are used in this
report. Throughout the report, terms which are assigned a specialized meaning are
printed in italics the first time that they occur. In some cases, the definition of a term
may be further refined later in the report.

An architecturegives the design and structure of a system. The class of situations in
which an architecture is intended to be used is termatbitgin For example, an
architecture might apply to the manufacture of discrete partapplicationis a subset

of one or more situations in the domain of an architecture having similar characteristics.
A particular shop, with a specific set of equipment and configuration is an example of
an application consisting of a single situation. The class of 3-axis milling machines is
an example of an application encompassing several situations. The realization of an
architecture in hardware and software for an application will be called an
implementatiorof the architecture.

In this report, areference architecturés defined to be a generic architecture for a
domain which is broader than a single situation. Henceforth in this report, we shall use
architecture and reference architecture interchangeably.

A complete definition of an architecture requires a numbelemhents of architectural
definition Elements of architectural definition are conceptual entities, which may or
may not have any physical realization. The elements of architectural definition are
discussed in detail in Section 3.

One of the main elements of architectural definition isattolitectural specification

which describes the architecture. An architectural specification is a prescription of what
the pieces (software, languages, execution models, controller models, communications
models, computer hardware, machinery, etc.) of an architecture are, how they are
connected (logically and physically), and how they interact. The pieces of an
architecture described above have specific meaning to the architecture and will be
referred to agrchitectural units Architectural units are frequently defined by giving
each one distinct functional characteristics, although this is not the only mode of
definition. We shall refer to the realization of an architectural unit in an implementation
as acomponenbf the implementation.
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Definition of an Architecture

An architecture consists of architectural units each of which is more or less concrete in
nature. Architectural units of similar concreteness can be grouped together to form a
cross section of the architecture where all units are at the same level of concreteness (or
abstraction). We shall refer to such a grouping teraf architectural definitionor

simply tierl. The concept of tier of architectural definition appears under different
names in [Biemansl, section 2.4], [Bohms1, throughout], [Dornier2, section 3], and
[Michaloskil, page 2-2]. A complete specification for an architecture includes an
architectural specification for each tier.

At each tier, the definition of an architecture consists of specifying a number of
elements of architectural definition. These are:

(1) statement of scope and purpose

(2) domain analyses

(3) architectural specification

(4) methodology for architectural development
(5) conformance criteria

These elements of architectural definition vary in indispensability. For example, an
architecture must have an architectural specification, but it is possible to use an
architecture which omits conformance criteria. Definitions of existing reference

architectures include different subsets of these elements of architectural definition and
place emphasis on them in varying degrees. However, an architecture which is
completely defined addresses all elements of architectural definition in a balanced
fashion.

The remainder of this section expands on the notions of tiers and elements of
architectural definition.

Tiers of Architectural Definition

Tiers of architectural definition, as defined above, are distinguished by their degree of
abstraction, with lower tiers being more concrete than upper ones. It is useful to define
tiers by identifying some specific aspect (or a set of aspects) that is broad in a higher
tier but becomes narrower in the next tier down.

To illustrate the idea of tiers, we consider a hypothetical architecture with three tiers.

The highest (most abstract) tier is characterized by being applicable to a broadly-
defined domain (discrete parts, perhaps).Within this broadly-defined domain, there are
any number of applications which are deemed by the developers of the architecture to

1. An alternative, somewhat more intuitive term for this concept wouklekof abstractionThe termtier

of architectural definitiorwas chosen in order to avoid confusion with other uses of thdeeehinotably
hierarchical level of control), both in this report and in prevailing control architecture literature. The notion
of hierarchical levels of control is used throughout this report and is the focus of the first section of
Appendix E.
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differ significantly from each other. For each application specified, the middle tier of
the architecture specifies the application-dependent features of the architecture and has
architectural units which generically identify functions, information and dynamics. For
each application, a number of implementation-specific architectures may be described.
This lowest tier of architectural definition is implementation-specific and describes the
mapping of architectural units onto software and hardware components.

At each less abstract tier of architectural definition, each architectural unit included in
the architecture will be described in greater detail. For example, at the highest tier of
architectural definition, methods for generating information models might be given, at

a less abstract tier of architectural definition, specific information models might be
given, and at the least abstract tier, the information models might be implemented as
locations in memory or as a database schema. The language used to express the
specification may well be different at each tier of the architecture.

Table 1 shows sample sets of architectural units which might be defined at each tier of
architectural definition of an architecture which has three tiers. These architectural
units are grouped into sets corresponding to the five elements of architectural
definition. The table is meant only to give examples; it is not intended to outline any

existing or proposed architecture.
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Table 1: Sample Architectural Units for a Three-Tiered Architecture

Element
of
Architectural
Definition

Tier of Architectural Definition

Top Tier

Middle Tier

Bottom Tier

statement of

domain-dependent,

domain-dependent

domain-, application-,

scope and application- application-dependent,| and implementation-
purpose independent, implementation- dependent
statement of scope and independent statement of scope and
purpose statement of scope and purpose
purpose
domain activity analysis domain-specific hardware-specific
analyses information analysis dynamic analysis

architectural

the general functionality

logical actuator

actuator hardware

(@)

specification | of system components | definitions specifications
logical sensor sensor hardware
definitions specifications
methods for logical connection wiring maps
communicating among| diagrams
components . .
communications communications
execution model hardware specificationg
templates for information models database system
information models schemas
template for task task definitions source code for drivin
definitions actuator
the type and content of| controller hierarchy source code for
logical control diagrams generating commands {
interfaces among subordinates
controllers
methodology | CASE tool used to automatic generator
for define tasks used to write C source

architectural
development

code for task

conformance
criteria

correct information
modeling language mug
be used

information models
tmust pass through

EXPRESS parser

data files must pass
through data file reader
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Three tiers are used in Table 1 only because several convenient examples fit into three
tiers. The top and middle tiers of Table 1 may be collapsed into one to make a two-tier
model.

Different architectures may have different numbers of tiers of architectural definition.
For example, the architecture proposed by Dornier described in Appendix E has four
explicit tiers of architectural definition. The RCS architecture may reasonably be
divided into three tiers and the MSI architecture into two tiers, although neither of the
two has explicit tiers in existing descriptions. If all architectures had the same number
of tiers of architectural definition, it would be feasible to give a unique name to the
architectural specification at each tier (the most abstract tier of architectural
specification might be called a canonical form, for example). Since this is not the case,
we are using the same term for each tier.

Statement of Scope and Purpose

The statement of scopef an architecture describes the range of areas to which the
architecture is intended to be applied. It is useful to identify explicitly items which are
out of scope, and to identify general characteristics of the domain which may extend or
limit its applicability to other domains. As Biemans and Vissers observe [Biemans1, p.
390], this statement is absent in the majority of proposals for (CIM) architectures.

A statement of purposdentifies what the objectives of an architecture are within the
given scope. The statement of purpose of an architecture should be a major determinant
of the contents of the architecture. If the objective is to achieve interoperability between
components of an implementation, it would be expected that definitions of shared
information and interfaces between components would be stressed. If the objective is
to guarantee real-time performance of the resulting control system, execution models
may be stressed.

Domain Analyses

A critical step which must take place before an architecture can be formulated is to
perform analyses of the target domain which reveal its essential characteristics. These
analyses arglomain analysesThe type of analyses done, the order in which the
analyses are performed and the language in which the results are expressed are part of
the methodology for domain analysis. The results of the domain analyses may be very
much different depending on the types of analysis performed and the analysis
methodologies used. Architectures often have biases consistent with the view(s) of the
domain which the domain analyses examined. It can be difficult to compare
architectures which were generated using different domain analysis methods.

Many methods for domain analysis exist. It is beyond the scope of this document to
discuss all, or even a broad set of them. In this report, for the purpose of comparing
architectures, the authors will adopt a specific set of types of analyses which are widely
accepted, described immediately below.

10
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Types of Analysis

An analysis in general, is an examination of the components of some complex and how
they relate to one another. The specific types of analysis discussed here conform to that
definition.

Commonly used forms of domain analysis are functional analysis, information
analysis, and dynamic analysis [Jayaramanl]. Functional and information analysis are
particularly well entrenched and have been used in structured programming for many
years.

A functional analysi®f a domain is an analysis of all the activities within the scope of
the architecture which a conforming control system is supposed to be able to perform.

An information analysiof a domain is an analysis of all the information within the
scope of the architecture needed for a conforming control system to function properly.

A dynamic analysisf a domain is an analysis of the characteristics of the functions and
information in the domain which vary over time during control system operation. It
provides qualitative and quantitative information about the sequence, duration and
frequency of change in the functions and information of the domain [Jayaramanl, p.
250]. Real-time requirements would be explored in this phase of domain analysis.

Domain Analysis Methodologies

The triple of functional, information, and dynamic analyses is supported, for example,
by languages for expressing analysis results developed under the auspices of the United
States Air Force’s Integrated Computer-Aided Manufacturing (USAF ICAM)

program? The associated methodology specifies that functional analysis is performed
first, followed by information analysis and finally, dynamic analysis. Many alternatives
are available. A currently popular alternative is object-oriented analysis [Dewhurst1,
Chapter 6]. These techniques mandate a cyclical development cycle with function and
information decomposition taking place simultaneously and producing “objects” which
have both information and functional content. Overall analysis of the dynamics of the
system of objects created is not explicit in this methodology.

Methodology for Architectural Development

It is important for an architecture to have a set of procedures for refining and
implementing the architecture. This set of procedures is callethéiieodology for
architectural developmeribr the architecture (which we will shortenrteethodology
when the meaning is clear). The architectural specification at each tier of architectural
definition is related to, and used in, generation of an architectural specification for the

2. The USAF ICAM effort developed three modeling methodologies: IDEFO for functional analysis
(function modeling)[Mayer1], IDEF1 for information analysis (information modeling) [Mayer2], and
IDEF2 for dynamic analysis (simulation modeling) [Mayer3]. The ICAM effort also developed IDEF1X
[ICAM1] for data modeling, to support database design.

11
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other related tiers as specified in the methodology for architectural development. If an
architecture has more than two tiers of architectural definition, a methodology will be
needed to link each two adjacent tiers.

A methodology may specify top-down decomposition, bottom-up composition or some
combination of both in constructing the complete architecture. For example, if the code
or specifications for the lowest tier is available, as is often the case when dealing with
vendor-supplied equipment, an implementation-independent template for the code may
be developed. In this case, the methodology would describe how to use the template.

A methodology for producing an architectural specification at a middle tier of
architectural definition from a specification at a high tier of architectural definition
might include:

(1) performing an activity analysis

(2) using a CASE tool embodying the high-tier specification to define
application-specific tasks, sensors, actuators, etc.

A methodology for producing an architectural specification at a low tier of architectural
definition from a specification at a middle tier of architectural definition might include:

(1) rules for assignment of software modules to computing hardware
(2) rules for using software templates

(3) timing analysis

(4) performance measurement capabilities

(5) debug mechanisms

If an architecture lacks a methodology for getting between any two tiers of architectural
definition, control systems developers must devise their own methods for making the
transition.

Conformance Criteria

Conformance criteriare criteria which specify how an architectural unit at one tier of
an architecture conforms to the architectural specifications of a higher tier, or how a
process for building part of an architecture conforms to the development methodology
given by the architecture for building that part.

Methods for determining conformance of a component of an architecture might
include:

(1) reading source code

(2) checking that documents which are supposed to be in computer-processable
format are in fact computer-processable

(3) observing an implementation in action
(4) devising test cases and using them to test control systems
(5) examining documentation of development activities

12
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General Architecture issues

The issues listed in this section pertain to architectures in general, not just to control

architectures. The purpose of discussing these issues is to develop a framework for
discussing and comparing reference architectures for control systems. Throughout this
section, we will assume that the definition of the architecture has the five elements of

architectural definition which were presented in Section 3.

Balance Among Elements of Architectural Definition

In the literature, it is common to read about architectures which do not have an explicit
scope or purpose, or which omit conformance criteria. Some architectures pay great
attention to defining the way in which the architecture should be applied to a real world
problem, others do not discuss this. What should be the balance of emphasis in the
architecture’s treatment of each of the five elements of architectural definition?

Scope Issues

There seem to be at least three dimensions of architecture scope: domain, life cycle, and
organizational extent. These terms are described below.

Natural language seems to be most suitable for the statement of scope and purpose.
However, it may be helpful, in addition, to use an N-dimensional space spanning some
large range and to identify a portion of the space as being within the scope of the
architecture. The selection of axes for this N-dimensional space for the classification of
architectural efforts has been one focus for both the work of the CIM-OSA project
[Joryszl1] and the work of ISO 184 SC5 WG1. [ISO1]

Domain

For deciding whether a situation to which the architecture might be applied falls in the
domain of an architecture, the primary subject matter of the situation is not usually a
critical factor. Rather, secondary characteristics of the situation (such as real-time
performance requirements, importance of safety, and need for resource sharing, among
many others) are likely to be the determining characteristics. The classification of such
requirements would be a challenge and to date the authors have not seen such a
classification. A large issue is how context-free can an architecture, or part thereof be
made.

Life Cycle

Thelife cycleof a control system is the stages in the life of the system. One breakdown
of life cycle (with subdivisions) includes: design (conceptual design, engineering
design), manufacturing (manufacturing engineering, scheduling, production,
inspection), use (testing, operation, maintenance, logistics support), decommissioning,
and disposal. How much of the life-cycle of a control system should be covered by an
architecture?

13
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Organizational Extent

The organizational extenbf an architecture is the set of related activities of an
organization covered by the architecture. MSI, for example, covers planning,
scheduling, and production. [Tingl] mentions factory planning, purchasing and
distribution, and personnel management in addition to these.

Even if an activity is not covered in detail by an architecture, it will be useful to provide
hooks from the covered activities to the uncovered ones known to be related. Having a
conceptual model which gives the interrelationships of all organizational data can form
the basis for such hooks.

Tiers of Architectural Definition Issues

As previously discussed, an architecture has one or more tiers of architectural
definition. A number of issues with respect to formulating these tiers must be raised.
How far from theory to implementation should a reference architecture go? How should
that continuum be divided?

Developers using architectures without clearly defined tiers of architectural definition
are likely to experience difficulties in determining implementation details and deciding
conformance. Fiala [Fialal] made the following comments about RCS, for example.

Using the decomposition-around-equipment rule, a different
architecture is obtained for a different set of equipmentThus, it would
be impossible to define “standard modules” and the corresponding
interfaces for the general architecture. it may be possible to have a base
document that describes the general principles, and on top of this define
applications, which are specific architectures for specific problems.

The difficulties Fiala cites are solved by having at least two tiers of architectural
definition. The upper tier includes an architectural specification (the “base document”
Fiala mentions) and a methodology for architectural development for producing things
in the lower tier. The lower tier may initially contain nothing, or it may contain a
template for an architectural specification and/or a template for a methodology. The
upper tier methodology is applied in conjunction with the upper tier specification to
create the lower tier specification (either from scratch or by filling in the template, if
there is one) and to create the lower tier methodology if one is required (also either from
scratch or by filling in a template).

Domain Analysis Issues

An architecture reflects the domain analyses upon which it was based. There are many
choices to be made in choosing both the type of analyses performed and the
methodology of the analyses.

14
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Aspects Covered

As suggested in [Bohms1], one dimension along which an architecture can be analyzed
is by identifying the aspects covered. This is distinct from scopaspects a cross-
cutting view of an architecture from some specialized viewpoint, such as information,
communications, or control flow. The CAM-I CIM architecture is cited in [Bohms1,
page 120] as identifying five aspects (management structure, information structure,
function/activity structure, computer systems structure, and physical structure), while
the CIM-OSA architecture is cited as selecting four aspects (function, information,
resource, and organization) - as shown on the “stepwise generation” axis in Figure 11
on page 223 of this report. Specifying a set of aspects from which to view the problem
domain is essential in formulating an architecture, but often they must be inferred from
the architectural specification, since they are not explicitly stated.

Existing architectures place varying amounts of emphasis on different aspects. As
previously mentioned, an architecture tends to reflect the domain analysis aspects used.
The two most widely accepted aspects are functional aspects and information aspects.
We have chosen to discuss functional, information and dynamic aspects of
architectures. As already noted, more aspects can be identified.

Functional Aspects

Thefunctional aspectsf an architecture describe what a control system conforming to
the architecture does. A functional specification would describe what roles components
could fill in the architecture and what functions each of these roles would encompass.
For example, both MSI and RCS specify controller hierarchies, in which one controller
has the role of superior and many controllers have the role of subordinate (to the
previously defined superior). Both architectures then define functions that controllers
having these roles should perform. For example, superiors must generate commands for
subordinate controllers and subordinate controllers must generate status information.

The choice of language for expressing the results of functional analysis is an issue. It
may be stated in natural language or in a formal language. Examples of formal
languages used for this purpose are Activity Scripting Language (AcSL) [Dornier2],
Structured Analysis and Design Technique (SADT)[Ross1], and IDEFO [Mayerl].

Information Aspects

The information aspect®f an architecture describe the information required for the
operation of an implementation of an architecture. Often, required information is
expressed only in data structures of the computer-executable languages (C, C++, Ada,
etc.) of the implementation. A different approach is to develop conceptual models of
the required information. Aconceptual data modedf a set of information is a
description of the information, always giving relationships among the members of the
set, usually including the data type of the members of the set, and often giving some of
the semantic content of the information. Conceptual models are expressed in formal
languages designed for this purpose, such as EXPRESS [Spibyl], NIAM (Nijssen
Information Analysis Methodology)[Verheijenl] and IDEF1 [Mayer2]. Some
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compilers exist which can translate a conceptual model into a specific computer
language or a database schema. For example, MSI has several EXPRESS models for
factory information which MSI requires an implementation to understand [Senehi2],
[Ray1l], [Catronl], [Barkmeyer2]. These MSI models may be translated automatically
by software tools into database schemas for a specific object-oriented database system.

The existence of “domain-independent” information models for architectures is
currently a topic for debate. Some efforts (such as STEP and CIM-OSA) have
attempted to construct such models, while others confine themselves to the construction
of models for more explicitly limited domains [Barkmeyer2], [Fiala4], [Waveringl].

Another open debate is the relationship between functional and information analysis.
Some methodologies insist that these are inextricably intertwined, whereas others view
the two as separate stages of analysis.

Dynamic Aspects.

The dynamic aspectsf a control system describe how the information and function
vary over time. Examples of formal languages used for this purpose are IDEF2
[Mayer3] and IDEF3 [Menzell]. IDEF2 produces a dynamic model appropriate for
constructing simulations; IDEF3 produces a dynamic model which captures the
behavioral aspects of the system. Execution models for real-time access and update of
information are dynamic aspects of the RCS architecture. The sequence of expected
messages defined in the MSI’'s control entity interface (CEI) specification is a dynamic
aspect of the MSI architecture [Wallacel].

Analysis Methodology

There are many different ideas about how domain analysis should be performed. Some
methods recommend that information analysis be done first, followed by functional and
then dynamic analysis. Other methodologies start with functional analysis and then do
information analysis. Still others insist that both be done simultaneously. It is unclear
what the best methodology is.

Architectural Specification Issues

One indispensable element of architectural definition is an architectural specification.
Within the architectural specification at each tier, there are many choices to be made.

Granularity

An atomic unitof an architecture is an architectural unit which the architecture does not
break down further into simpler architectural units. Tdranularity at a tier of
architectural definition is the size of the atomic units which the architectural
specification at that tier addresses. Granularity is a characteristic of a tier of
architectural definition, not of an entire architecture. An architecture may have different
granularity at different tiers.
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What degree of granularity is best at each tier of architectural definition? In an
architecture with several tiers of architectural definition, is it reasonable to have
granularity become finer at lower tiers of architectural definition?

In an architectural specification, the atomic units generally have to interact to do the
work of the control system, and a formal specification of how they interact is required.
If the size of an atomic unit is small, the number of types of interaction becomes large
and defining them all and understanding their dynamics becomes difficult. If the size of
an atomic unit is large, the domain of the architecture is likely to be small, and the
overall architecture does not add much information above that specified by the
capability of the atomic units.

An atomic unit may either have internal subunits or may b&aek box When an
atomic unit has internal units, we will refer to these unitsudsnodulesSubmodules

are not architectural units, since the submodule has no meaning outside of the context
of the architectural unit. When an atomic unit is a black box, the architecture specifies
the functions and interfaces of the atomic unit, but does not place requirements on the
internals of the atomic unit. Implementations of the architecture are still free to
decompose atomic units further by creating submodules and specifying interfaces
between the submodules within a single atomic unit. Any submodules so defined,
however, may not interface directly with external atomic units or with submodules of
external atomic units. They must go through the interface of the atomic unit of which
they are a part. Otherwise, they are violating the architecture and will make the atomic
unit of which they are a part non-interoperable.

Atomic units may combine to forrmolecular units whose interactions must also be
specified. And, possibly, molecular units may combine to form larger molecular units.
Note that any atomic unit or molecular unit that is recognized by an architecture is, by
definition, an architectural unit.

The “Processes” issue discussed in Section 4.4.3.3 becomes important when the
granularity of an architectural specification reaches the degree of fineness at which

processes are defined. It should be noted that, depending how “process” is defined, a
single process may contain multiple atomic units, a single process may correspond to
one atomic unit, or a single atomic unit may be composed of many processes.

Architecture Definition Languages
What language or languages are suitable for defining architectures?

Most architectures are defined in natural language (all the referenced papers are
available in English), but this is often vague. A degree of vagueness is appropriate at a
high tier of architectural definition. In fact, several authors explicitly endorse
vagueness. Unfortunately, it is often not clear what is vague by intent and what is vague
inadvertently. The areas of intentional vagueness should be clearly defined. This is
possible in formal modeling languages, but just is not done in natural language.
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The elements of architectural definition are very different and therefore it is appropriate
to use different formal languages. An architectural specification (what it is) is quite
different in nature from a methodology for architectural development (how to build it),
for example, so different languages are likely to be used.

A formal modeling language intended to be used for modeling information is called an
information modeling languag&xamples are EXPRESS, NIAM, and IDEF1X. These
languages are suitable for defining items of information in an architecture such as
messages, catalogs of resources, or process plans. They can be used for modeling other
parts of an architecture but were not built for that purpose. They do not make it easy to
state in an architectural specification at a high tier of architectural definition what is
expected when a lower-tier architectural specification is generated from it. This
represents an opportunity for enhancement of these languages.

When an architecture includes several tiers of architectural definition, it will be
appropriate to use different languages for the same element of architectural definition
at different tiers. For example, at the lowest tier, the architectural specification should
be given in a standard computer language (and even that might be split into source code
and object code), while at the highest tier a formal modeling language may be suitable.
The MSI project (see Section 7.2) has used the EXPRESS information modeling
language for defining the ALPS process planning language [Catronl] and has built
tools for automatically generating a schema for a commercial database system from an
EXPRESS model. One of the authors has written an EXPRESS model for the
NASREM architecture at a high tier of architectural definition [Kramerl1]. The Dornier
architecture (see Section E.2) uses the IDEFO language for activity analysis and other
formal languages for other purposes.

Formal languages for expressing methodologies for architectural development (which
are action oriented) are less well developed than those for expressing architectural
specifications (which are object oriented).

Formal languages have several advantages over natural languages:
(1) formal languages are much clearer and less ambiguous;

(2) formal languages provide formal methods of extending abstract models into
restrictions of the original domain (subtyping, for example);

(3) models constructed in formal languages may be checked algorithmically for
logical completeness and syntactic correctness - for some languages,
compilers exist which will do these jobs automatically;

(4) with formal languages, compilers may be written which will produce
executable computer code or database schemas automatically from
statements in the language - many such compilers already exist.

Because of these advantages, there is a strong case that architectures should be stated
in formal languages to the extent possible, and stated in natural language to the extent
that formal languages are unable to carry the required information. It is desirable that
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natural language descriptions equivalent to formal language descriptions be written to
accompany statements in formal language, so people unfamiliar with the formal
language can understand the intent of the formal model.

Bottom Tier of Architectural Definition

At the lowest tier of architectural definition, the architectural specification describes the
physical hardware, software etc. The issues at this tier are many.

Hardware

What assumptions about the computer and communications hardware on which a
control system runs is it reasonable to make in an architecture? How can assumptions
about hardware be minimized?

It is possible (easy, in fact) to design an architecture without regard to physical

implementation. The hardware available for implementing a control system, however,

has a profound effect on whether and how the architecture can be implemented.
Typically, the architecture is either violated or revised when an implementation is built,

because of hardware constraints.

Operating System

To what extent should an architecture specify the type of operating system used for
implementations?

Several levels of operating system may be used to implement a control system: the
computer operating system itself (for example UNIX), the language-specific operating
system compiled into an executable program (for example LISP or C), and possibly an
operating system that appears in source code (for example the Production Management
Operating System for the AMRF Vertical Workstation [Junl, section 111.2.2.4.1]).

Processes

To what extent should an architecture define the term “process”, the interaction
between operating systems and processes, and the role of processes in
implementations?

The term “process” has been defined in different ways in different control systems in
the past. If a multitasking operating system such as UNIX is used, the operating system
probably provides the definition of process. UNIX adds confusion by providing for
“lightweight processes” as well as ordinary processes (there is no definition for
“heavyweight process”). In a non-multitasking operating system, the control system
designer can define “process” whatever way (s)he pleases. One definition of process
has been that the function calls at the top level of a “main” routine in a C-language
program for implementing a control system will be called processes. Fiala has
suggested [Fialal] that a software entity that implements a unit of a control system
which is not further decomposed in the architecture be called a process. If a computer
includes more than one cpu board (processor), whatever is executing on a cpu board
may be called a process.
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Methodology For Architectural Development Issues

As discussed in Section 3, the second most important element architectural definition
is a methodology for architectural development. A methodology tells how to build an
architecture and how to apply the architecture to create an implementation.

The issue of what language to use to state a methodology for architectural development
was raised in Section 4.4.2.

Cyclic Development

As previously discussed, there are many ways to develop an architecture: top-down
from the highest tier of architectural definition, bottom-up from the lowest tier of
architectural definition, etc. One commonly used technique is thatydlic
developmentThe idea of cyclic development is that one develops an architecture,
assesses the finished product (the assessment would include implementing the
architecture), and uses the results of the assessment as feedback to a cycle of refining
the architecture. This may be done several times.

One type of cyclic development is prototyping, wherein a vertical slice through all tiers
of architectural definition is developed but only a narrow subset of the total intended
capabilities of the control system is included in the slice. This results in a working
control system with limited capabilities whose performance can be assessed. The
lessons learned from the assessment are applied in building the full system.

Many authors explicitly encourage cyclic development. This includes, for example,
[Michaloskil, page 1-1], [Quintero3, section 6], [Senehi3, section 1].

The model of an architecture described in Section 3 of this report does not have a formal
role for feedback during the development process. The formal model should be

augmented with an informal understanding that cyclic development is encouraged. An

attempt to formalize the role of feedback in the model may be worthwhile.

Mapping Architectural Components Onto Hardware

However many layers of architectural definition an architecture has, as long as there are
at least two, the problem of determining how to map architectural components onto
hardware will always arise in building the architectural specification at the lowest tier
of architectural definition. What rules can be used for making this assignment?

CASE Tools
What is the role of CASE tools in a methodology for architectural development?

There is no question that CASE (Computer-Aided Software Engineering) tools can be
built for nearly any architecture. Given our assumption that an architecture will consist

primarily of controllers arranged in a hierarchy performing pre-defined tasks, at least

two software modules for a CASE tool are desirable, one for defining tasks and one for
defining controllers and controller hierarchies. When an architecture has more than one
tier of architectural definition, it may be desirable to have more than one CASE tool.
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Many aspects of a methodology for architectural development can be built into a CASE
tool. If this is done, using the CASE tool ensures that the methodology is followed.
Because of this, it seems very desirable that CASE tools be built.

Building CASE tools alleviates the problem of there being no good formal languages
for methodologies. When a methodology is embodied in a tool which developers can
use, the tool can enforce the use of that methodology to a great extent.

Conformance Criteria Issues

The uses of conformance criteria for an architecture are discussed in Section 3. A
conformance tess a procedure that determines if conformance criteria have been met.
In the sections below, conformance testing issues are discussed.

Conformance Testing Methods
What sort of conformance tests could be devised?

As noted in Section 3, methods for determining conformance might include reading

source code, running documents that should be computer-processable through
computers, observing an implementation in action and comparing its behavior with the
behavior expected from a conforming implementation, devising test cases and using
them to test control systems, and requiring documentation of development activities.
Conformance testing could also include establishment of an organization to do the
testing.

CASE tools for building control systems according to an architecture might be subject

to conformance testing by devising test cases which any CASE tool should be able to
handle and checking that any CASE tool purported to be in conformance could handle
these cases. Existing CASE tools for building control systems, however, usually

embody the higher tiers of architectural definition of some specific architecture, and it

is hard to imagine a useful CASE tool which did not embody an architecture. Thus, only

if there were a widely accepted reference architecture would it be feasible to test CASE
tools this way.

Usefulness of Conformance Testing

How important is it that conformance criteria be included in an architecture? Who
would use conformance tests?

Conformance testing can be useful to the developers of an architecture in the context of
evaluating the architecture. To evaluate an architecture, implementations of the
architecture would have to be built. Each implementation would be a test of the

architecture, provided that the implementation conforms to the architecture.

The end user of a control system may want to be assured that a component is
conformant with a particular architecture to ensure that it can be used with previously
installed components.
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Testing Conformance in Development

If an architecture includes one or more methodologies for architectural development,
the development process for building an implementation should use them. Using the
methodologies is part of conforming to the architecture. How can this type of
conformance be tested?

Determining conformance to a methodology is difficult. Unless the activities in a
methodology result in lasting documents, there may be no evidence whether the
methodology was followed or not. It is usually not difficult to define documents which
must be created during development to provide such evidence, but it is difficult to
define such documents so that developers regard them as anything but a nuisance. It is
also usually not difficult - although it may be tedious - to create the required documents
even if the methodology has not been followed. This is a common tactic used by
developers.

To the extent a methodology for architectural development is embodied in a CASE tool,
conformance to a methodology may be obtained by ensuring the tool is used.

Conformance Classes

A conformance class a set of architectures (or implementations) distinguished by a
combination of features at a tier of architectural definition. Different conformance
classes may have different and incompatible choices of features or may correspond to
different degrees of conformance to an architectural requirement.

In defining an architecture, there are often situations in which incompatible choices
must be made. Rather than requiring that each choice result in a different architecture,
it may be useful to define conformance classes for implementations using incompatible
choices of architectural features.

Allowing Non-Conformance

Once an implementation is built, it is common that the implementation offers easy
opportunities for better performance by making small changes outside the scope of the
architecture, so that the implementation is no longer fully in conformance. Typically,
easy changes of this sort have a high hidden cost, in that they compromise the
modularity of a control system, make its behavior less understandable, make it less
portable, make it harder to reuse, etc. Because such changes may have high value, it
may be useful to provide a formal method of assessing the degree of conformance. To
this end, it may be advisable to establish conformance classes which correspond to
different degrees of conformance to an architecture.

Standards Issues

An architecture should make use of established standards. For developing standards
there is an issue of suitability of the current state of the standard. The standard may not
yet have a degree of maturity which the developers of an architecture need. In this case,
it is possible to use the standard as much as possible and add the necessary
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enhancements to make it useful. When using a developing standard, there is an
additional issue of when to upgrade from one version to another. Considerable cost may
be involved in doing upgrades, so it is important to evaluate the stability of the version
before switching to it. As always with the use of any new technology, the availability
of tools for development generally trails the development of the new technology. This
fact needs to be considered in deciding whether to use an emerging standard.
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Control Architecture Issues

In this section we raise issues which apply to control architectures, rather than all
architectures.

In order to discuss the issues, we must assume that certain architectural units are present
in a control architecture. These architectural units are: controllers, planners, schedulers,
groupings of related controllers/planners, communications systems, data systems,
resources, plans and tasks. Definitions will be given in the first subsection of this
section. The definitions given here are meant to provide a basic understanding only; a
major portion of defining a control architecture is in generating the detailed description
of architectural units at each tier of architectural definition. In issue discussions we
assume that the definition of the architectural unit is as given in that subsection. How
the architectural unit's definition relates to the other uses of that term or what name an
architectural unit may have in a specific architecture are not issues here.

Since a primary domain of the joint architecture will be manufacturing, a number of
issues will appear which are specific to manufacturing.

We conclude the control architecture issues discussion with a section that outlines the
desirable characteristics of a control architecture.

Preliminary Definitions

The purpose of a control system is to achieve goaimahis a desired state of affairs.
Goals include such items as manufacturing a part, moving a robot arm to a specific
place, or navigating a vehicle from one point to another. A scheme developed to
accomplish a specific goal is termeglan. Typically, a plan consists of a number of
discrete steps. Atepis the basic unit of subdivision of the procedures section of a plan,
usually specifying that a single activity (single at some conceptual level) be carried out
(drill a hole, deliver a tray, machine a lot of parts, etc.). Often the steps are sequential,
but this is not necessarily sBlanningis the activity of making plans of any sort—
process plans, production plans, schedules, etc. A piece of work which achieves a
specific goal - actual work, not a representation of work - is termaskaA generic
representation of a type of work, such as moving in a straight line from one point to
another, opening a gripper, or drilling a hole, i8ak elementAn instruction from a
superior controller to a subordinate controller (or from a client controller to a server
controller) to carry out a task icammand

Tasks are usually the result of a command, although an architecture may permit a
control system to have spontaneous activity. The most obvious examples of tasks
initiated by commands are the processing tasks. Other types of activity, such as fetching
data, navigating through the plan or synchronizing with other plans may also be

initiated by commands.

If a controller can carry out only one work element, the command does not need to
name it. Otherwise, it is expected that a command will name a work element and will
provide the necessary values of parameters to the work element.
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The process of determining which tasks must be carried out by the control system is
termedtask generatiorand performing these tasks is terntadk executionThe
specification of the mechanism for task generation and execution forms a major portion
of a control architecture.

In a control system,@lanneris an agent which generates or selects plans to accomplish
one or more goals, andcantroller is the agent which directs the performance of or
performs specific task§chedulings the assignment of specific resources and times to
the steps in a plan. Acheduleris an agent which performs scheduling. Often, the
operations of scheduling and planning are combined in one function. In our discussions
however, we will not assume that this is so.

Domain

Earlier in the report, we stated that there are certain characteristics of the domain which
make a distinction in the architecture. For control systems, there are several important
characteristics of the domain in which the system operates which affect the architecture
of the system. These are:

(1) the degree to which the environment is known in advance. The greater the
environment is known in advance, the less sensory processing and adaptive
capabilities the control system must have.

(2) the degree to which the environment is structured. A highly structured
environment permits the control system to make certain assumptions, but
may force the system to be able to handle systems of constraints.

(3) the degree of variability. An environment with rapidly varying features
requires more rapid response.

Architectural Conformance

Many control architectures, since they include physical components which are not
originally designed to work with the system, must come to grips with the issue of the
extent to which components which do not conform to the architecture can be included
in the architecture. In particular, non-conformant controllers and communications
systems are frequently encountered in applications to real world situations. It is not
clear how best to deal with this.

Human Interactions with the Control System

Should the architecture specify how humans interact with the control system? Which
parts of the control system should the human be permitted to interact with? Which
aspects of the interactions between the components of a control system should the user
be permitted to alter?

Since virtually every control system has situations in which human intervention is
required, some specification of the nature of human interfaces seems appropriate. The
type of intervention may well depend on the architectural unit affected and the
assumptions of the control system.
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Interactions of humans with individual controllers are discussed in Section 5.5.9.

Controller Issues
This section discusses architecture issues pertaining to individual controllers.

Controller Functionality

A primary issue is: what functionality should be included in a controller? Many
architectures include planning and scheduling within the controller. Others insist that
controllers are merely dispatchers of tasks or performers of tasks upon command.

Internal Units

Related to the question of controller functionality is the issue of what (if any) internal
units a controller should have. This issue is also related to the architecture granularity
issue. Should there be one internal unit for each function? Which of these internal units
should be permitted to be architectural units? Which should be submodules? Which
internal units should communicate independently? What should be the form and
content of the communications among these internal units?

As examples of functional decompositions, we note that the RCS architecture
decomposes a controller into value judgment, behavior generation, world modeling,
and sensory processing and then decomposes behavior generation into job assignment,
planning, and execution. See Section 7.1 for a detailed discussion of each of these
functions. The MSI architecture considers a controller to be primarily a task execution
and task monitoring agent, with other functions being placed in separate architectural
units. See Section 7.2 for a detailed description of the functional units of MSI.

Operational States

Theoperational statef a control system or controller (or other active component of an
implementation of an architecture) is a state variable indicating its fithess for operation.
Typical values for operational state are: down, idle, ready, and active.

Should controllers have operational states? To bring a control system up, deal with
errors, etc., it seems essential to have operational states. What should they be and what
sequence should be followed during start-up and shutdown?

Any kind of reconfiguration of a controller hierarchy, other than rebuilding the
hierarchy when the control system is totally shut down, may be difficult without
operational states.

Execution Model Issues

An execution modes a logical view of how the execution of a control system is carried
out. Certain execution model issues which need to be settled in selecting hardware and
operating systems are discussed in this section.
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Blocking vs. Non-blocking 1/0

Input/output (1/O) is called “blocking” if the process doing the 1/O stops while 1/O
operations are being carried out. If the process does not stop, its I/O is called “non-
blocking.” Blocking I/O may make the process too slow or make its speed
unpredictable. Non-blocking I/O may allow data to be overwritten before the 1/O
operation is executed and may introduce data concurrency problems.

Interrupts vs. Cyclic Processing

This issue arises when multitasking is being used, and several tasks are running on the
same processor. In an interrupt model, the execution of a task may be suspended if an
interrupt signal is received indicating that some other task wants to execute and the
other task has higher priority. In cyclic processing, a list of tasks is maintained, and each
task is executed for a certain amount of time (or until it is finished). Then the next task
is executed for a time. The operating system keeps cycling through the list.

Sleeping Processes with Wake-ups

In a cyclic processing control system, if it is known that a process in an executing
system will have nothing to do for a while, the process can be “put to sleep”
temporarily, meaning that it does not execute on its usual cycle. A flag may be set to
indicate that a process is sleeping which is unset when the process should “wake up”
and resume cyclic execution.

Being able to put controllers to sleep is useful in cases where a controller has several
subordinates, only one of which can operate at a time. For example, if a robot has three
interchangeable grippers for its one wrist, it may be useful to have a separate controller
for each gripper. Rather than repeatedly starting and stopping the gripper controllers
and dynamically reconfiguring the control system when the grippers are changed, all
the gripper controllers could always be part of the control hierarchy, with only one
awake at a time.

Operational Modes

An operational modeis a style of operation of a controller or control system.
Operational modes might include, for example: debugging (enabled vs. disabled),
autonomy (automatic, shared control, or manual), logging (enabled vs. disabled), single
stepping (on vs. off).

Should controllers have operational modes? If so, what should they be, and what values
of each mode should be allowed? Having modes seems desirable.
Standard Internal Workings

Should the internal workings of the controllers in a control system follow some
standard or paradigm? For example, some versions of the RCS architecture require that
each controller be a finite state machine.

The advantages of having standard internal workings are:
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(1) controller templates at intermediate and low tiers of architectural definition
can be constructed. It may even be possible to design a controller shell so that
all controllers in a control system not at the lowest hierarchical level are the
same, and they differ only in the data that drives them.

(2) CASE tools can be constructed for building controllers.

(3) humans can understand how each controller works more easily than if each
one is unique.

(4) determining the execution time of each controller is easier than if non-
standard internals are used.

(5) standard methods for testing controllers can be developed and used.

Command Queues
Should control entities have the capability to put commands received in queues?

If queues are used, there are many ways in which they can be defined and managed.
First In First Out (FIFO) and Last In First Out (LIFO) are simple methods. Priority
gueues are a more complex management technique. Queue management tasks can be
added to the capabilities of controllers. Managing queue size or overflow becomes
necessary if queues are used. The use of queues may make other control system
features, such as error recovery, significantly more difficult to implement.

Multiple Simultaneous Tasks

Should a controller have the capability to perform more than one task at a time? If so,
how should the controller determine what resources are required for each task and how
any shared resources should be allocated?

Human Interactions with Controllers
Should the architecture specify how humans interact with the controllers in the system?

Some specification of the nature of human interfaces seems very desirable, but the
appropriate degree of detail of the specification is not obvious. There are several sub-
issues.

User Control of Tasks

Should the user be permitted to direct a controller to perform a specific task? If so, how
should a user introduce a task to the controller?

One way in which a user could directly hand a controller a task is to define standard
work elements for every controller above the (vendor-specific) hardware controller. A
“user_control” work element could be defined which would be executed when a user
wanted to control the subordinates of the controller. A standard interface could be
designed for this work element, which might list all the subordinates and their work
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elements. The user would select a subordinate and a work element and the interface
system would help the user construct a command from the work element. Then the
command would be sent to the subordinate.

Default Interface Operations
Should there be a default set of operations possible from the human interface?

Some set of operations may apply to every controller in a control system. For example,
if every controller has operational modes (e.g., debug enabled/disabled, logging
enabled/disabled), it would be very useful to be able to change the operational mode
from the human interface. This set of common operations provides the candidates for
defining a set of operations possible from every human interface.

Default Human Interface
Should a default human interface be defined?

It may be desirable to define a default human interface so that a human could interact
with every controller in a control system without having to know the specific tasks the
controller is able to perform and without having to learn every interface anew. The
default human interface would have a standard method of performing all default
operations and a method of commanding the controller to perform each of the tasks
unique to the controller.

It is not clear at what tier of architectural definition the definition of the default human
interface should be part of the reference architecture. An architectural specification at
an upper tier of architectural definition might simply require that a default interface be
defined at a lower tier.

Situation-Specific Human Interfaces
Should situation-specific human interfaces be allowed?

Many applications involve information that is best transmitted graphically to humans.
Displays tailored to such information are required. It is not clear how best to provide
for interactions between a control system and its situation-specific human interfaces.

Collections of Controllers

Within a control system, it is normally necessary for controllers to coordinate their
activities closely to achieve system goals. For example, a robot which places a part for
a milling machine must coordinate its actions with those of the milling machine and the
gripper. The necessity for coordination suggests that certain groups of controllers
should work together.

Modes of Interaction

How should controllers that need to work together do so? What should be the criteria
for grouping controllers together? Should the interaction of controllers be direct (via
command-and-status), indirect (via shared data), or a combination of both?
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Two common models for organizing the interaction between controllers are the
hierarchical model and the client-server model. In the hierarchical model, each
controller supervises a number of subordinate controllers to whom it gives commands
and from whom it receives status information. In the client-server model, a controller
(denoted a server) offers a type of work which it can do for other controllers (for
example, transporting something). The other controllers in the control system (denoted
clients) can request the server controller to provide that service for them given certain
parameters. Many variations on the communications between the client and the server
are possible in this model, although the basic idea is the same. Many CIM projects have
found that a hierarchical method works well for all activities except material handling,
which performs better in a client-server model.

Is it desirable to mix hierarchical and client-server models? If so, how can this be done?
There are many ways a mixed mode might be implemented.

(1) There could be a reconfiguration queue. There would always be a strict
hierarchy, but the service controller would move from superior to superior.

(2) The service controller could have multiple simultaneous superiors.

(3) The service controller could be at a fixed place in the hierarchy, with service
requests being posted to the database. The superior of the service controller
could just keep giving “provide_service” commands to the service controller,
with parameters extracted from the database.

The scope of this report does not permit an exhaustive discussion of this issue, but the
preceding remarks give the reader an indication of the many other issues which are
spawned from this one.

Control of Devices and Controllers

In any control architecture, at the lowest level of control, each controllable physical
device will be controlled by a controller. However, whether a controller can control

other controllers depends on the architecture. In a partly or fully non-hierarchical
control architecture, those controllers which run in the client-server mode in the role of
server will have no superior controller, and those that run in the role of client will not

have subordinates performing the functions for which they are client. If a control

system is fully client-server, no controller will have any subordinate controllers, but

some controllers will control physical devices. In a hierarchical control system,

controllers may control either devices, other controllers, or a combination of both.

Synchrony and Speed

Two controllers are said to be sgnchronyif there is a fixed relation in time between
their execution cycles. There are many ways of being in synchrony. Both controllers
might report to a common superior which keeps them synchronized. One controller
might execute at random times, causing the other to execute immediately afterward.
Both controllers might execute cyclically with a fixed period; for example one
controller might execute every ten seconds while the other executes every three
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seconds. If both have nominally fixed periods, phase drift may be uncontrolled (a likely
occurrence if each has its own clock) or controlled (by using the same clock, for
example). If phase drift is controlled, the phase angle may be set (usually to zero); for
example the two controllers with 10 and 3 second cycles might be forced to start at
exactly the same time every 30 seconds.

In many situations, the issue is speed, not synchrony. For example, to ensure stability,
a subordinate may need to execute at least some number of times as fast as the superior
(say ten, for example). If the subordinate executes fast with randomly varying
execution times, (so that it executes between 15 and 40 times each time the superior
executes, to continue the example), then it is not synchronous with the superior but may
meet the performance requirement through speed.

Speed and synchrony requirements may be stated independently or dependently in
many different ways.

What sort of synchrony, if any, should be required of a grouping of controllers? Should
the same type of synchrony be required for every grouping, or should different options
be allowed.

Is there a need for a system-wide clock? What is accomplished by maintaining various
levels of accuracy? How can a system-wide clock be used to maintain synchrony?

Task Specification, Generation and Execution

Tasks are one of the most important aspects of a control system. Frequently, it is the
nature and decomposition of tasks which determine the structure of a control hierarchy.
To accomplish a task using a computerized control system:

(1) The work elements required to describe the components of the task must be
defined, and the semantics of each work element must be known to the
controllers which receive commands and to the planners which plan for those
controllers which execute that work element.

(2) A plan must be made for which instances of work elements are to be carried
out and in what order. The plan may also include information on which
resources are used, the degree to which each resource is used by the task, the
duration for which the resource must be used, pointers to information needed
to carry out the plan (such as current resource availability), and
synchronization with the current plan or related plans.

(3) Commands to carry out subtasks must be given.
Issues related to tasks are discussed in the following sections.

Specification of Work Elements

What are the required characteristics of a work element? In what format should work
elements be specified? It is a challenge to state the semantics of a work element
unambiguously. A formal specification language that provides for representing task
semantics would be useful.
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Task Decomposition

How should abstract tasks be decomposed into less abstract tasks which devices are
capable of executing? Once a task has been decomposed into less abstract tasks, how
should these tasks be assigned to controllers?

The decisions on these issues are implemented in the process of defining work elements
and in deciding which controllers should be able to give commands referring to these
work elements and which controllers should be able to accept those commands.

Task Execution Model

An important part of an architecture is the model of the process of task generation and
execution to which the architecture subscribes. Although it is beyond the scope of this
report to discuss all models, we shall briefly describe two. In the first model, there are
a number of stages in task generation and execution. The generation of a task begins
with a generic plan. Next this plan is specialized by assigning specific resources and
specific times for task execution. Finally, during the actual execution of the plan,
current information is considered in making any choices explicitly coded into the plan.

In the second model, a plan may be developed while it is being executed, with only the
next step being known at any time.

Important sub-issues of task execution include the coordination of executing tasks, and
the method in which controllers are to receive and monitor tasks. The degree to which
the environment can be expected to remain known and stable may dictate which model
is selected.

Command and Status Exchanges

As previously discussed, a superior or client controller tells a subordinate or server what

is to be done by sending a command. A command is a type of message. So that the

superior or client may know how the work is progressing, it is usual for the subordinate

or server to send messages back. The returned messages may specify, for example, that
the commanded task is done, is in progress, or is not being performed because some
error condition exists. We will refer to this interchange of data asdimmand and

status exchangand to the specification of the messages agdh@mand-and-status

protocol
Should a control architecture specify the command and status exchange between

controllers? If so, how detailed should this specification be? Should it specify the
semantics of the exchange, the format of the exchange, the encoding of the exchange?

The nature and extent of command and status exchanges depend on the control
structure, that is, how groups of controllers function together (see Section 5.6), but
almost all existing architectures have exchanges of some sort. Most hierarchical
architectures will go into an error state if the exchanges break down. Some heterarchical
architectures [Duffie3] include exchanges but anticipate they might break down and
provide for automatic recovery.
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At the interface between a controller and a piece of physical equipment, it is normal to
have a command and status exchange regardless of the control architecture. The
controller must send the equipment commands in a format the equipment is designed to
accept, and must accept whatever status the equipment is designed to return. Often the
returned status will give the controller an indication of the physical condition of the
equipment and possibly the condition of the task which it has been given.

Coordination of Tasks

Implementations should be able to handle task coordination. How should this be
accomplished? Should the information for coordination be in the work element, in the
plan for a task (if one exists), or in some other part of the control system? Most
commonly, the controllers responsible for the performance of the task coordinate by
some form of messaging. Alternatively, for example, in some CIM architectures,
information for coordination of tasks is stored with the part which is being
manufactured.

Data
The fundamental questions which an architecture must address with respect to data are:
(1) what data should be required to be used and generated by its components,

(2) whether the specification of such data should be conceptual, logical, physical
or some combination of the three,

(3) how data may be physically distributed in a system,
(4) how distributed data should be accessed and by whom it should be accessed.
In subsequent sections, we will discuss each of these issues.

Required Data

All control architectures have some types of data that are required by the control
system. An architecture can specify this data on one or all of three levels of data
abstraction. The most abstract level is the conceptual level. Data specified at this level
describes the idea which the data represents. For example, an architecture may specify
that a machine tool should have a physical location, without specifying the coordinates
in which this location is given or the physical location of the data storage. At the next
level is the logical level of definition. To continue the previous example, a machine tool
could be said to have a property called “location” corresponding to the conceptual
notion of location. At the physical level, the implementation of the representation of the
machine tool must be fully specified with a coordinate system for the location data, the
fields of the data structure or database entry describing the machine tool location, and
the physical location of the database or database server. The degree of data abstraction
at which an architecture specifies data may vary at each tier of architectural definition
and is related to the granularity of that tier.
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Required data can be eithmgrsistent datgddata stored on a permanent medium such

as files or databases) won-persistent datédata stored in memory). A decision must

be made as to whether to specify the persistence of some or all data. The persistence
issue is independent of the data access issue, which will be discussed later.

There are several important types of information which are specified in a control
architecture. We will discuss two of them here, plans and resources, and discuss other
categories later as they arise in the discussion of specific architectures.

Plans

In existing control architectures, the characteristics of plans vary extremely widely, and
are related to the concept of planning and control which the architecture has and to the
structure of the controller which the architecture requires. One architecture may view
planning as a single-stage endeavor while another architecture may have separate
stages of planning. With a single-stage view of planning (as taken by RCS, for
example), the term “plan” or “process plan” is sufficient. pfocess planis a
specification of the activities (possibly including alternatives) necessary to reach some
goal. With a multi-stage view, it is useful to have a different term for the plan at each
stage. In a three-stage view of planning (the one taken by MSI and described in Section
7.2.2.1.1, for example) the three plan types might be “process plan”, “production
managed plan”, and “production plan”. In the three-stage view, a process plan is more
narrowly defined; for example, it may be required to identify resources in generic
terms.

Typically, commands issued by controllers are generated by combining current
information about the system (e.g. resource status) with the information generated by
reading plans.

What types of plans should be included in the architecture? What types of information
should a plan contain? What plan format(s) should be used?

Resource Definition

A resource definitionis a description of a resource, usually given in a formal
information modeling language. Should the architecture include formal resource
definitions? In the definitions of resources in the architecture, are the ways in which the
resources are used specified? Should dynamic characteristics of the resource be
included with its description? Are there types of resources which share characteristics?
If so, how should resources be categorized.

Some architectures, MSI for example, include a formal definition of resources. There
are several general categories of resources: for example, consumable resources
(machine fluid, solder, etc.), logical resources (e.g. controllers) and permanent
resources (lathe, drill press, etc.). The resource definitions within these categories
describe classes of resources which have common characteristics. This can be referred
to as a catalog of resources. In addition, MSI specifies that the factory under
consideration describe the actual resources which are on hand and their status.
Controllers themselves are considered resources.
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Depending on the nature of planning in a control system, resource classes or actual
resources may be specified in plans.

Itis recommended that a reference architecture include some amount of formal resource
definition. What information should be included in a resource definition and what
language is used for resource definition are important issues not addressed in depth in
this report.

Data Handling Architecture

The data handling architecture specifies how data is accessed and which architectural
units may access which data. In this discussion, the persistence of data is not
assumed—data access mechanisms are similar in concept for persistent and non-
persistent data.

Data Access Mechanisms

In any system, data may be stored in a single place or be physically distributed in
several places throughout the system. The access of data which is stored in one place is
straightforward; the data is either local (on the same physical machine) or it is accessed
through the communications system for the physical machines.

If data is distributed, there are two possibilities: an implementation can be required to
specify the physical location when accessing data, or there is a server system for the
data which an implementation contacts to access the data without knowing its physical
location. A well-known example of a server system which can hide the location of data
files from an implementation is NFS [Libes2]. Systems of this type also exist for
databases (e.g. IMDAS - [Barkmeyerl]), but these are less well-developed and, at
present, too slow for real-time use. An example of a server system for non-persistent
data is NIST's Common Memory [Libes1], [Rybczynskil]. Depending on the server,
the implementation may need to have a method of determining that the data which it
currently has is up-to-date. This issue is a distributed system problem and a full
discussion of it is beyond the scope of this report.

How much or how little the architecture leaves the organization and access mechanism
of data to the implementation is an important architecture issue.

Data Access Permissions

There seems to be universal agreement that any component can have a certain amount
of private data. Private data is usually information which is irrelevant to other
components. It is an architectural choice whether to specify the private data for
components and whether to specify its mode of access.

Some data will have to be shared among different components. This data will typically
be distributed and will require one of the access schemes discussed in the previous
section. If the architecture permits a component to keep local copies of shared data, the
architecture should also specify whose responsibility it is to ensure consistency of this
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data with the shared copy. Whether the architecture permits more than one mode of
access for shared data is an additional issue. In some architectures, access is required to
be through the data access service, in others, multiple access mechanisms are permitted.

Potentially each item of data would have a scope. A sample set of scopes would be:
local to function, local to process, local to group of processes, global in network. The
method of implementing a scope would be determined when a system is configured. For
example, a variable local to a group of processes sharing a memory board might be
implemented by establishing a memory board address for the variable and having each
process use the address. If a variable were used by processes running on physically
separate hardware, the variable might be implemented using the communications
system.

Planning, Scheduling and Resource Allocation

A key issue for control systems, which is very sensitive to the environment in which
they operate, is the way in which the control system plans, schedules and allocates
resources. In some domains, such as manufacturing, the construction of long-range
schedules and the allocation of resources is required. In other domains, such as the
navigation of autonomous vehicles, the environment is not known in advance and
scheduling and resource allocation must be done in real time, as information about the
environment is processed. The following sections point out important architecture
issues concerning planning, scheduling and resource allocation. Some issues are more
appropriate to some domains than others.

Process Planning

To what extent should the architecture require plans to be generated in advance, as
opposed to deciding what to do in real time? If plans are generated in advance of their
use, should the resource allocation for the plans and the scheduling of the plans be done
at the same time as the plan generation, or can these activities be performed later using
a skeletal plan which refers to resource classes? Can these modes be mixed effectively?
If so, what requirements does this place on the control structure?

Scheduling

How should scheduling be handled? There is a wide spectrum of possibilities for
scheduling. These possibilities range from operating with no schedule, in which the
order of events and what gets done is a by-product of control system operation, to full
scheduling, where detailed activities are planned for each controller at a scheduled
time, so that all controllers not at the lowest hierarchical level are merely dispatching
commands generated from a plan.

What aspects of the architecture must be adjusted for control systems which use
scheduling? At least, such a control system must include a scheduler, and control
information must include schedule information. Such a system would need information
on the availability of resources as well, if the architecture has availability classes for
resources and the resources are used in plans.
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The type of scheduling required for an application may vary widely. For example:

A transfer line (or flow shop) is necessarily sequential, so little scheduling is required
for the controllers of the line.

A shop in which there is no resource contention (for example, if the shop is
underutilized, or if all the machines are identical, all jobs have equal priority, and each
job can be done on one machine) may not need scheduling. Everything is processed as
fast as possible as soon as it arrives.

[Biemans1] makes the point that a group of steps that must be executed sequentially
may be treated as a unit for scheduling purposes.

In a manufacturing system, in addition to the scheduling of control tasks, other items
must be scheduled. For example, maintenance tasks and material handling tasks must
also be accounted for. A manufacturing architecture must specify whether these non-
control tasks are scheduled or handled by other means.

Resource Allocation

Some control architectures need to providedsource allocationassigning resources
(temporarily or permanently) for some specific purpose. Resource allocation is critical

in control systems in which resources must be shared, such as manufacturingg’systems

In the case of control systems which are reconfigured periodically (dynamically or
when shut down), controllers and the equipment they control are also treated as
resources. With respect to processors and processes, there are four additional cases of
resource allocation that may be considered (given here in order of increasing
dynamics):

(1) Allocating processes to processors in a control system where processes do not
move from processor to processor. In the rest of this report we treat this as a
methodology for architectural development issue, not a resource allocation
issue, since the problem is what design rules to adopt for making the
allocation. This issue was introduced in Section 4.5.2, “Mapping
Architectural Components Onto Hardware”.

(2) Allocating processes to processors in a control system which is reconfigured
periodically (dynamically or when shut down), and reassigns processes to
processors during reconfiguration.

(3) Allocating processing time to various processes when a processor has to
execute several processes which do not move from processor to processor.
This is an intensively researched operating system issue in computer science
and many commercial computer systems deal with it.

(4) Allocating a processor for a certain amount of time to a process in a control

3. A number of other issues specific to the manufacturing domain must be dealt with by the architecture.
Among these are: product specification, order processing and tracking, part and lot tracking, lot sizing (the
designation of the number of parts which will be manufactured at one time), and material handling.
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system where there are several processes and several processors, and the
processes can move from processor to processor. This is a current research
issue in parallel processing.

5.10 Communications

To what extent should the architecture deal with communications? Should the
architecture specify the communications paradigm, the communications

implementation? Should one communications scheme be required for all portions of the
architecture, or can multiple schemes be used?

Three aspects of the communications paradigm which affect the architecture are: the
number of communications entities which may receive a message transmitted by a
communications entity at one time, whether a message is guaranteed to arrive at its
destination by the network software, and the timeliness of message delivery by the
communications system.

Regarding the first aspect, there are three possibilities. A communications system can
permit a communications entity to send a given message: to only one other
communications entity (termegoint to pointcommunications), to more than one
known communications entity (termguailticastcommunications), or to more than one
unknown communications entity (termdatoadcast communications). From an
architecture viewpoint, the critical distinction is that point to point and multicast
communications require a communications entity to know which other entity or entities

it is sending a message to, whereas broadcast communications permits the sending of
messages to other communications entities whose identities are unknown to the sender.

Message delivery may be either guaranteed or non-guaranteed. The architectural
impact of this is that, if non-guaranteed message delivery is used, the implementation
is responsible for ensuring message transmission or for compensating for potential
message loss.

Open System Interconnection (OSI) communications systems use point to point
communications with guaranteed message delivery. This paradigm frees the user from
retransmissions to ensure that a message is received, but forces the sender of a message
to identify the receiving party for the message. An alternative is NIST's Common
Memory [Libes1], [Rybczynskil]. This paradigm has both buffered and non-buffered
variants. The buffered version prevents immediate over-writing of messages but does
not guarantee delivery. The NIST Common Memory paradigm has the advantage that
any number of communications entities can have access to the same shared
information, without the message sender knowing in advance who the recipients are.

The timeliness of message delivery by the communications system is an important
consideration for real-time control systems. Communications systems can be designed
with this in mind, and there are standard networking schemes which support data
transmission for real-time control systems.
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Checks and Safeguards
To what extent should checks and safeguards be built into an architecture?

Checks and safeguards are useful to provide reliability, fault tolerance, and error
recovery.

Clearly, control systems which are dangerous when working improperly (airplane
autopilots and nuclear reactor operation systems, for example) need safeguards. Are the
safeguards outside the basic architecture or an integral part of it?

MSI requires a guardian interface for each controller. The guardian interface functions
as the human emergency override and intervention point. The existence of this interface
is mandated by the architecture.

Some architectures, the Dornier architecture, for example, distinguish between
“normal” error (such as position error for a machine tool axis, which is fed to the servo
law of the controller for the axis) and abnormal errors (such as when a machine tool axis
trips its overtravel switch).

Error Recovery

In addition to error checking which is required for safety reasons, a control system
needs to have mechanism(s) for identifying and correcting error conditions. To what
extent is the ability to recover from errors in each major subsystem (e.g.
communications, groups of controllers, data system) built into the architecture? What
mechanisms does the architecture permit or require for handling cross-subsystem
errors? What feedback mechanisms for fine tuning control system operation does the
architecture permit?

Desirable Characteristics of a Control Architecture

What are the desirable characteristics of a reference architecture, and how can a
reference architecture be defined to have these characteristics? For each characteristic,
what is it about the architecture that provides for the characteristic?

There is general agreement in the literature on what the desirable characteristics are.
The subsections below present these desirable characteristics. Some of the
characteristics (e.g., understandability) can be measured on an entire architecture, while
others (e.g., speed of performance) can only be measured on implementations of the
architecture. Even where only the implementation can be measured, the level of
performance may be indicative of the quality of the architecture, not just its
implementation.

Achieving one desirable characteristic may help or hinder in achieving another. Some
of the characteristics are synergistic, others antagonistic. Low cost, for example, goes
well with low complexity and easy modifiability. High speed, on the other hand, is
likely to conflict with low cost, understandability, low complexity, and several others.

Determining what it is about the architecture that provides for any given characteristic
may be easy (modularity leads to ease of modifiability, for example) or hard.
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High Quality
The quality of the architecture should be high.

This is an inescapably vague idea which should, nevertheless, be stated. Many other
subsections in this section describe components of quality. Other components of quality
might also be identified, and a method of integrating them to produce a single measure
of quality might be devised.

Low Cost

The cost of implementing an architecture should be low for a given level of
performance.

The method of keeping costs down varies according to the environment. In a research
environment, the main cost is usually the salaries of the researchers, and itis commonly
less expensive to buy more computing hardware to improve control system
performance than it is to devote a lot of effort to optimizing performance within existing
hardware. In commercial control systems it is usually more cost effective to optimize
hardware performance and make efficient use of computing resources.

Modularity

Aspects of a control system (data flow, control flow, communications, etc.) should be
kept as separate as possible, and each aspect should be divided into encapsulated parts,
to the extent possible.

Increasing modularity generally helps achieve many other desirable features.

Low or Manageable Complexity

The less complex an architecture, the better. Many domains, however, require complex
functionality from the architecture. Usually, the most that can be asked is that the
architecture provide a good method of managing this complexity.

Fault Tolerance

A control system is fault tolerant if it will continue to work when one or more of its
components is not working.

Fault tolerance may be strong or weak. A strongly fault tolerant system will continue to
work at the same level of performance when there are faults. A weakly fault-tolerant
system will have performance degradation proportional to the number of faults in the
system. Weak fault tolerance is often called “graceful degradation”.

Error Detection and Recovery

It should be possible to be informed of problems quickly, and if something goes wrong,
it should be possible to get the control system working again quickly.
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Extensibility

It should be easy to add new components or capabilities to the control system without
having to make major changes to the existing components and capabilities.

Speed and Response Time
Implementations should perform fast enough to meet the requirements of the domain.

Control systems which must keep pace with events in the environment argeaHed
timesystems. Systems in which response must be generated within a fixed time interval
are calledhard real-timesystems. Real-time systems which are not hard real-time
systems are refered to saft real-timesystems. Control systems in which the rate at
which events occur in the environment does not matter are not called real-time but may
still have speed or response time requirements.

Modifiability

It should be easy to change existing components of the control system. The foremost
method of achieving this is modularity. Having adequate documentation, using

standard languages, and keeping complexity down also contribute to ease of
modifiability.

Portability

It should be feasible (preferably easy) to transport an implementation of an architecture
from one computing platform to another. An obvious method of helping provide
portability is to use a standard high-level computer language for source code in the
implementation. Compilers for the language will be available for many computing
platforms. Portability may be limited by the implementation’s requirements on the
operating system.

Predictability

It should be possible to predict what the control system will do. It is necessary both to
be able to predict what will happen given a fully specified environment and set of inputs
and to be able to predict limits on control system behavior given any possible inputs in
any environment in which the control system is intended to work.

The need for this requirement is dependent upon the domain. For control systems in
which failure is dangerous, predictability is very important. In domains where multiple
“correct” choices are possible given the same set of inputs, this requirement may not be
as stringent.

Reconfigurability

A control architecture should include methods for configuring control hierarchies or
networks when the control system is fully idle.
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Dynamic reconfiguratiorfmodifying the control hierarchy while the control system is
working) is very desirable for error recovery and fault tolerance; it should be possible
to replace a defective controller without shutting everything down.

Dynamic reconfiguration is very desirable in some situations, even if nothing goes
wrong. For example, if a shop gets a wide mix of parts, it would be desirable to
reconfigure cells so that a cell can handle all operations for a part it is trying to
manufacture. In implementations for use in space missions, it would be advantageous
to be able to reassign robots to different working groups smoothly in mid-mission.

Reliability

Implementations should be reliable. A control system is reliable if it works as intended
with an acceptable failure rate - what is acceptable is up to the system designers and
users.

The reliability of software correlates positively with its predictability. Both can be
achieved, at least on the software module level, by testing each module with every
combination of allowable inputs and verifying that the output is correct.

Reusability of Software

It should be feasible to reuse software from one implementation of an architecture to
another, since the new implementation should have the same controllers and tasks as
the old one.

Understandability

It should be possible for a human to understand the architecture and implementations
of the architecture. For very large, complex control systems this is critical. Most large
systems are developed by teams of people who require a common understanding of the
system to do their work correctly.

Compatibility with Existing and Emerging Standards

An architecture should conform to existing, well-established standards, where
appropriate. With respect to evolving standards, an architecture should, depending
upon the maturity of the standard, require their use insofar as it is feasible.

42



6.1

Feasibility Study: Reference Architecture

Other Control Architectures

In preparing this report, it was necessary to understand previous work which has been
performed by both divisions (RSD and FASD) and in the general community concerned
with control architectures. Although the authors of this report did not attempt an
exhaustive literature search, many papers were analyzed. In this section we review a
number of control architectures that have been described in the literature.

A brief description of each architecture is given, highlighting those aspects of the
architecture to which the architecture pays the most attention. Two of the architectures
described in this section, CIM-OSA and Dornier, are reviewed in more depth in
Appendix E. The RCS and MSI architectures are not covered in this section, but are
discussed in detail in Section 7 and Appendix C.

Some papers contain special features which may interest the reader. These are:
[Dilts1] provides a classification and comparison of types of architectures.
[Auslanderl] presents principles of real-time control software.

[Dornierl], [Lumia2], [Minl], [VanHaren1] have performed comparisons of specific
proposed architectures.

Several papers include glossaries of terms related to architectures: [Albus7],
[Dornier2], [Leakel], [Martinl‘], [Quintero2], [Senehil], [Senehi2], and [Wallacel].

Introduction

All the architectures which we have reviewed address some of the elements of
architectural definition. Not one of the architectures which we reviewed includes all of
the elements of architectural definition in its definition. Moreover, each architecture
places emphasis on a unique and limited subset of the issues identified in Section 4 and
Section 5 of this report. For example, the Dornier architecture, but not most others,
includes requirements definition; the RCS, Dornier, CIM-OSA, and other architectures
include methodologies for architectural development at various levels of formality; the
MSI architecture includes general criteria for determining conformance. This lack of
uniformity makes architectures difficult to compare, as the data for performing the
comparison is often lacking.

A traditional approach to solving this difficulty is to devise a classification scheme
which permits comparable architectures to be grouped together. This section describes
two classification schemes found in the literature, and proposes a simple classification
scheme which will be used to organize the architectures reviewed in this report.

4. [Martin2] through [Martin6] also have glossaries, but they are subsumed by the glossary of [Martin1].
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6.1.1 Classifying Architectures

A classification scheme requires that dimensions of a control architecture be identified
and that any dependencies among these dimensions be made clear. There is enormous
variety in the choices of dimension which can be made. The authors present two
classification schemes which proved useful in the analysis of architectures performed

in this report.

In [Bohms1] nine dimensions for modeling Computer Integrated Manufacturing
systems are identified.

(1) modeling level (reality, models of reality, models of models)
(2) language level (level of modeling language used)

(3) aspect (set of views, e.g. functions, information, resources)
(4) composition (global to detailed)

(5) scope (type of activity)

(6) representation (modeling language used)

(7) product life cycle (design, production, maintenance, etc.)
(8) actuality (to be vs. as is)

(9) specification level (generic to fixed - how much choice left)

Section 4 of [Bohms1] proposes decompositions of each of the nine dimensions into
points or regions. For example, the modeling level dimension has three points: CIM
Framework, CIM Models, CIM in Practise.

In section 2 of [Biemansl] a second, very different, set of dimensions is identified.
They are not explicitly called dimensions in the paper.

() flexibility

(2) precision of architecture definitions

(3) generality of a CIM architecture

(4) level of architectural definition of a CIM architectire

The two sets of dimensions just described are interesting and reveal the difficulty of
establishing a comprehensive method of characterizing architectures. Each of the
dimensions may be of interest in some situations. Most of the dimensions are useful in
describing each tier of architectural definition, not entire architectures. For example, a
single architecture may encompass several tiers of architectural definition and use
several different languages in its specification.

Some programming languages, such as C++, are object-oriented, in that programming
is done by defining classes and instances of objects, which have attributes and
functional behaviors. “Object-oriented” is not descriptive of a type of architecture. Any

5. In this report, tier of architectural definition is used instead.

44



Feasibility Study: Reference Architecture

of the types of architectures described here can be implemented in an object-oriented
language. Heterarchical architectures, however, are particularly suitable for
implementation in an object-oriented language.

Since no method of classification is totally satisfactory, this paper will not attempt a
detailed classification. Using the control method as the first preliminary dimension,
Section 6.2 discusses architectures in which control is the aspect of the architecture
most heavily emphasized. Section 6.3 discusses architectures in which control is a
minor aspect. Table gives a summary of architectures reviewed for this report which
are not discussed in detail.
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Table 2: Miscellaneous Architectures

Citation

Description

[Biemans2]

Presents a hierarchical controller-based reference mode
manufacturing planning and control.

| for

[Boykin1]

Presents a very brief overview of the CAM-I CIM architecture.

[1SO1]

Presents a reference model of shop floor production.

[Juddi]

Describes a method of manufacturing system (workstations, ce
individual lines) design using “executable” functional specificatic
This might be viewed as an analysis-based approach.

Is, or
DNS.

[Litt1],[Jungl]

Presents the RAMP (rapid acquisition of manufactured parts)
architecture [Littl], and discusses the implementation of the RA
architecture at an established site [Jungl].

CIM
\MP

[Norcross1]

Discusses a controller which handles multiple simultaneous task
coordinates them via resource allocation.

s and

[Skevington1]

Describes an architecture that includes a “metadatabase”
“metaoperating system.” It is said to be suitable for manufacturin
small shops.

and a
gin

[Spectorl]

Presents a “supervenience” architecture for controlling autond
robots. The architecture provides for on-line process planning
dynamic environment.

mous
in a

[Wendorfl]

Reports on a family of controllers developed in a comme
environment, one of which is a workstation controller intended t
used in a hierarchical control system with a cell controller as its suy
and automation modules as subordinates. The workstation con
uses process plans (called “recipes” in the paper) and handles sch¢
and resource allocation and contention. It can do multiple simultar
tasks.

rcial

D be
Derior
troller
>duling
1eous

[Weston1]

Describes a system named AUTOMAIL, which is called “a flex
integration shell” for CIM and provides services for communicati

ible
hNS,

information access, and task execution.

6.2 Architectures Emphasizing Control Aspects

Although there is no universally agreed on categorization, four commonly discussed
types of control architecture are: centralized, hierarchical, modified hierarchical, and
heterarchical [Diltsl]. We have given disproportionate representation to hierarchical
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architectures in this report (in comparison to the universe of papers on control systems
and architectures) because MSI and RCS are hierarchical, and we intend to propose a
hierarchical architecture.

In this section we cite advantages and disadvantages of the four types of control
architecture. These are generalizations, not hard truths. The advantages and
disadvantages cited are in comparison to the other types.

Centralized Control Architectures

The idea of aentralized controlrchitecture is that a single controller running on a
single computer controls everything directly. Centralized controllers are discussed in
[Dilts1]. Usually, a centralized control architecture includes a centralized data
repository with a single data access protocol.

Advantages of a centralized control architecture include:

(1) no need for communications among controllers (although communications to
device drivers is still needed),

(2) ease of data handling,
(3) less difficulty with global optimization,

(4) the several advantages of having only one program to worry about (only one
place to look for bugs, one status interface, one control interface etc.).

Disadvantages of a centralized control architecture include the following. The
disadvantages tend to be catastrophic:

(1) vulnerability to failure,
If one little thing goes wrong, the entire system is likely to stop,

(2) graceless performance degradation,
Typically, if something goes wrong the system does not just work a little more
slowly; it does not work at all.

(3) hard to extend,
If the system grows, when the computational demands become too large for
the host computer, there may be no way to extend it.

(4) hard to program.
The program that is the heart of the controller becomes complex, prone to
bugs, and hard to maintain.

[Johnson2] describes a centralized control system named CIMPLICITY, a product
offering from GE Fanuc.

[Maimon1l] presents a centralized controller for a flexible manufacturing system which

is decomposed internally into a scheduler, a process sequencer, a dynamic resource
allocator, and run-time services. It is served by several databases and issues commands
to a number of machine controllers. The internal decomposition is described as a
hierarchical decomposition by the author.
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Hierarchical Control Architectures

The hallmark of dierarchical control architecturés that controllers are arranged in a
hierarchy in which controllers interact through a command-and-status protocol. While

a strictly hierarchical control system explicitly disallows the exchange of commands
among peer controllers, it may permit peer controllers to share information by any
number of mechanisms (e.g. through information shared in a database.) Often, the
command structure is a simple type of hierarchy, a tree, in which each controller has
one superior and zero to many subordinates. Hierarchical systems can be run on a single
computer with a single processor, on a single computer with several processors, or on
several different computers.

Most of the control architectures described in the papers reviewed for this report are
hierarchical control architectures.

Advantages of a hierarchical control architecture include:

(1) natural modularity,
Each controller can be treated as a software module, facilitating incremental
development, making the system software easier to understand and maintain,
and allowing the use of templates for controller code.

(2) fairly easy extensibility,
The system may be extended by adding controllers and computers and
changing the hierarchy.

(3) somewhat graceful degradation,
If something goes wrong during system operation, in a well-designed
hierarchical system, only one branch of the hierarchy needs to stop.

(4) allowance for different frequencies of operation of controllers on different
levels of the hierarchy.
Typically, controllers at lower levels of the control hierarchy have higher
frequencies than those at higher ones.

Disadvantages include:

(1) need for communications among controllers,
Centralized controllers do not need such communications.

(2) difficulty integrating system-wide service functions, such as material

handling.
Heterarchical control (to be discussed shortly) does not have this problem.

(3) difficulty in debugging.
Errors may occur in the interactions between controllers. When control
programs are distributed among processes or computers, standard debuggers,
which are effective with centralized control, are not likely to help much in
finding such errors.

Several hierarchical control architectures will be discussed in the following sections.

48



6.2.2.1

6.2.2.2

6.2.2.3

Feasibility Study: Reference Architecture

AMRF (Automated Manufacturing Research Facility)

The AMREF architecture was developed at NIST. As discussed earlier in this report, it
was a predecessor of both RCS and MSI. We have included only a small sample
[Jacksonl], [Jones2], and [Jones5] of the several dozen papers written about the AMRF
in the bibliography of this report. The lineage of RCS at NIST predates even the AMRF,
a five-level hierarchical control system with sensory feedback for a robot having been
described in [Barberal] in 1977.

The AMRF architecture includes five hierarchical levels: facility, shop, cell,
workstation, and equipment. Material handling is positioned as a workstation under
cell. Tasks are decomposed along control hierarchy lines. Controllers are resident on
several different computers and communicated via standard interfaces. Process
planning is done off-line for all controllers. The IMDAS (Integrated Manufacturing
Data Administration System) data system [Barkmeyerl] and a network
communications system with NIST's Common Memory [Libes1] are used.

Scheduling and resource allocation are not handled.

Dornier

Under contracts from the European Space Agency, the Dornier firm produced several
papers [Dornierl], [Dornier2], and others concerning control architectures. [Dornier2]
proposes a reference architecture for European space automation and robotics control
systems. The architecture is intended to be suitable for at least robot systems, surface
roving vehicles, and dedicated automation equipment. We are not aware of any
implementations of the Dornier architecture.

The Dornier architecture describes tiers of architectural definition explicitly (in other
terms) and has four of them.

A three layer control hierarchy is proposed. No rationale is offered for why three layers
are suitable.

Each controller has three major modules: nominal feedback functions, forward control
functions, and non-nominal feedback functions. No rationale is offered for the
decomposition of a controller into three modules.

Of all the architectures examined for this report, the Dornier architecture provides the
most formalized methodology for architectural development. The methodology uses
the “structured analysis and design technique” (SADT).

More details on the Dornier architecture are provided in Appendix E.

GISC (Generic Intelligent System Control)

GISC is being developed by the Department of Energy. It is not yet a fully defined
architecture. It includes a set of software systems called GISC-Kit contributed by
various DOE laboratories. As described in [Griesmey&@IEC is an approach to the
construction of controllers for complex robotic system&ISC-Kit is the library of
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software modules that the designer of a robot system controller can access for an actual
implementatioh The primary domain intended of GISC is robotics for cleaning up
hazardous waste at DOE sites, but the architecture itself is not limited to that.

One of the components of the GISC-Kit is a system called General Interface for
Supervisor and Subsystem (GENISAS) [Griesmeyer2], which is a communications and
event-handling shell service for supporting a command-and-status protocol between
superiors and subordinates in a hierarchical control system. The shell knows about
various types of command and status messages, but does not know the semantics of the
messages (e.g., in the case of a command, it does not know what the superior is telling
the subordinate to do).

Jones

Albert Jones of NIST has written extensively on CIM architectures, starting with the
AMREF in [Jones2] and [Jones5] and continuing with an examination of architecture
issues in [Jonesl]. In recent years, he (with several colleagues) has proposed an
architecture in a series of papers [Jones3], [Jones4], [Davisl], [Joshil], which identifies
the functions of controllers as adaptation, optimization, and regulation. The controllers
are arranged hierarchicallyAdaptation is responsible for generating and updating
plans for executing assigned tasks. Optimization is responsible for evaluating proposed
plans, and generating and updating schedules. Regulation is responsible for
interfacing with subordinates, monitoring execution of assigned.tdskses4, page

63].

Modified Hierarchical Control Architectures

Systems which serve many different controllers in different parts of the control
hierarchy (such as material handling systems, which deliver part blanks to
workstations) pose special challenges for a hierarchical architecture. Modifying a
hierarchical control architecture by implementing these controlled services as
independent agents without a superior is typical. This is what we mean by a modified
hierarchical control architecture.

The advantages and disadvantages of a modified hierarchical control architecture are
similar to the unmodified version, except that the disadvantage of not handling system-
wide services well is removed, and a disadvantage of having system performance be
less predictable is added.

Heterarchical Control Architectures

In a pureheterarchical control architectureeach controller has no superior and no

subordinate¥ Controllers interact by issuing requests for bids, making bids, and
entering into contracts to do work.

Heterarchical architectures typically use distributed databases - each controller has its
own database - but that is not a requirement.

6. Device drivers for equipment are not regarded as subordinates.
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Advantages of a heterarchical control architecture include:

(1) strong natural modularity,
Each controller can be treated as a software module.

(2) very easy extensibility,
The system may be extended by adding controllers and computers.

(3) graceful degradation,
If something goes wrong with a controller during system operation, only the
controller that has the problem needs to stop.

(4) allowance for different time scales.
Disadvantages include:

(1) need for heavy communications among controllers,
This is to handle all the soliciting, bidding, and contracting.

(2) very hard to predict system behavior,
Predicting what a heterarchical architecture will do (which controllers will do
which tasks and when a task will be done, for example) is typically difficult.
It is often not even clear if the solicit-bid-contract procedure will reach
closure.

(3) very hard to optimize system behavior globally.

[Dilts1] discusses heterarchical architectures in the context of a comparison of types of
architectures and seems enthusiastic about them. [Hatvanyl], [Johnson1], [Shaw1],
[Tingl], and [Vamos1] espouse heterarchical architectures.

A dispassionate analysis of the performance of heterarchical architectures is offered in
[Uptonl].

A heterarchical architecture is not necessarily focused on controllers. The focus may be
on the item being worked on, rather than on the item that does the work. The domain
for which this seems most appropriate is discrete parts manufacturing. The method of
interaction employed is to make “intelligent parts” which know what needs to be done
to them and can negotiate with controllers and enter into contracts to have it done. The
controllers with which an intelligent part deals must be independent agents (able to
negotiate and enter into contracts).

Neil Duffie (with co-authors) has published several papers about heterarchical
architectures with intelligent parts, including [Duffiel], [Duffie2], and [Duffie3]. The
papers report implementations of heterarchical architectures for discrete parts
manufacturing in a research environment.

A third variety of heterarchical control is called the “data flow” model, although
“claiming” model might be a better description. In this model, controllers are active
agents, but there is no bidding. A special component, Module 0, is responsible for
keeping track of what work has been done on a set of tasks. Module O broadcasts the
work to be done, and each controller that can do a piece of work puts it on its queue of
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things to do. When the piece of work comes to the top of a controller's queue, the
controller claims the piece of work and works on it; all other controllers remove it from
their queues.

[Tingl] discusses controller-driven, part-driven, and data flow models.
Other Architectures Emphasizing Control

NGC (Next Generation Controller)

Under contract with the NGC program of the United States Air Force, the Martin
Marietta Company developed a Specification for an Open System Architecture
Standard (SOSAS). SOSAS is documented in six draft volumes [Martinl] through
[Martin6] totaling about 1000 pages.

The SOSAS architecture is the most comprehensive architecture which was reviewed
for this report, but it is very uneven. Most curiously, although control is emphasized
throughout, there is no explicit commitment to any of the four kinds of control
described above. The services which are provided lend themselves to a hierarchical or
modified hierarchical architecture and not to a heterarchical architecture. There is no
explicit support, in particular, for controllers requesting bids, making bids, or entering
into contracts. Neither, on the other hand, is there any support for modeling a controller
hierarchy.

SOSAS defines two distinct categories of architectural units: services and applications.

Services are defined in the first volume of the set and include operating system (called
“platform”), communications, data management, presentation management, task
management, geometric modeling, and basic 1/0. Operating system and basic 1/O are
dealt with on less than a page each by referencing POSIX and OBIOS standards,
respectively.

Four “standardized applications” intended to use the services are defined, one in each
of the last four volumes of the set: workstation management, workstation planning,
controls, and sensor/effector. The controls volume includes the definition of a neutral
command language (NCL) for numerically controlled machine tools.

Volume 2 gives formal models in the EXPRESS language of information required in
SOSAS-compliant systems. This volume defines three categories of information
models: execution, manufacturing practice, and controller practice. Many hundred
EXPRESS entities and types are defined. Rather little explanatory text accompanies the
formal EXPRESS statements.

The SOSAS volumes include extremely little to describe the range of applications to
which the architecture is intended to apply. Conformance is given attention in five of
the six volumes, but is marked as “TBD” in many places in volumes Ill, IV and VI. The

SOSAS provides no methodology for developing systems which comply to its
architectural specifications.
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Subsumption

A control architecture called the “subsumption” architecture has been developed by
Rodney Brooks [Brooks1] which is quite different from any of the others discussed in
this report. The focus of the architecture is on systems such as robots, which may use
many controllers, but have system-wide behaviors, such as walking or hiding. The
general approach is to use layers of behaviors, with upper level behaviors being built
on lower level behaviors. For example, the “exploring” behavior is a level above the
“moving around” behavior, and uses the “moving around” behavior.

The subsumption architecture uses sensed data from the environment directly as input
to the controllers. This approach is in contrast to the approach (used in MSI and RCS)

of constructing a model of the environment from the data and using this model as an

input to controllers.

The atomic unit of the subsumption architecture is a process, usually implemented as
an augmented finite state machine. Processes are grouped into behaviors as a molecular
unit. There can be message passing, suppression, and inhibition between processes
within a behavior, and there can be message passing, suppression, and inhibition
between behaviors. A behavior cannot interact with a process inside another behavior.

Architectures Emphasizing Data Aspects

Some architectures say little or nothing about control but emphasize data aspects. These
cannot be located along the control dimension of architecture classification, so we have
made a separate class for them.

CIM-OSA

CIM-OSA (Computer Integrated Manufacturing - Open Systems Architecture) is an
architecture being developed by the ESPRIT AMICE project [Chenl], [Joryszl],
[Jorysz2], [Klittich1], [Klittich2], [Pansel], [Shorterl]. The CIM-OSA scope is limited

to CIM but looks at the whole system life-cycle, including consideration of
requirements specifications at one end and system change at the other. The aim of the
architecture is to provide an integrated framework to support manufacturing within an
enterprise. The documentation of CIM-OSA does not define clearly what the
framework is. It includes, at least, an integrated data system architecture for
manufacturing enterprises.

The data system architecture provides “front end services” to users. There are four types
of front end service: application (e.g., CAD or CAPP), human, machine (e.g., robot or
NC machine tool), and data management. Each front end service uses a “data access
protocol” to provide the requested service. The two data access protocols are “business
process services” and “information services”.

The CIM-OSA architecture is a work in progress. Prototype implementations
conforming to the architecture are only now being built.

CIM-OSA does not include control in the architectural specifications. There is not even
any discussion of control processes as independent entities.
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More details on the CIM-OSA architecture are provided in Appendix E.

Harhalakis

[Harhalakis1] describes an unnamed data-oriented architecture for computer integrated
manufacturing which deals with data common to computer aided design, computer
aided process planning, and manufacturing resource planning. This architecture
“focuses on the facility level of the enterprise and concentrates on the integration of
information, rather than hardwateThe intent is to ensure consistency and integrity
between data common to two or more modules. Each module is assumed to have its
own database.

Implementation is accomplished by identifying the key information types used by each
module and incorporating a rule base into a distributed database management system to
control the flow of data between modules.
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The RCS and MSI Architectures

Is it feasible for RSD and FASD to jointly develop any single reference architecture? If
it is feasible and done, how useful will the resulting architecture be?

It should be feasible for RSD and FASD to develop a joint architecture if its scope is
sufficiently limited. The broader the scope, the harder it will be to define a joint
architecture.

In this section we describe the RCS and MSI architectures individually and then
compare them issue-by-issue, using the issues identified in Section 4 and Section 5. An
issue-by-issue analysis of MSI and RCS is in Appendix C.

The RCS Architecture

The bibliography to this report lists 40 papers about RCS by 14 primary authors. There
are more papers about RCS not reviewed for the report. In this section we will use “the
RCS papers” to mean the 40 papers about RCS which were reviewed.

This section provides a brief description of RCS, using the elements of architectural
definition identified in Section 3 of this report to structure the section.

The definition of RCS has evolved over the years, and different people developing or
using it have different views on what it should be. The description given here is
intended to follow the mainstream, as defined primarily by the eleven papers by James
Albus reviewed for this report. Where there are significant variations in other papers,
they are cited, but we have not tried to describe all variants of RCS. A more detailed
discussion of RCS and its variants may be found in Appendix C.

Scope and Purpose

RCS is intended as an architecture for complex, integrated machine control %ystems
which work in a changing world and keep pace with the changes in real time. The
spectrum of intended RCS applications includes:

(1) high-speed servo control of machines with multiple joints or axes of motion

(2) coordinated control of several machines or large machines with several
subsystems

(3) computer integrated manufacturing
(4) mining

(5) submarine navigation

(6) space station robotics

(7) land vehicle driving.

7. Most of the RCS papers also say that RCS is an architecture for “intelligent” systems. In this report,
however, we do not deal with the notion of intelligence.
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Domain Analyses

The RCS architecture does not require any formal analyses. In order to apply RCS,
however, a user of RCS will find it necessary perform analyses (task decomposition,
controller hierarchy structure, etc.).

Architectural Specifications and Methodology For Architectural Development

In most of the RCS papers, architectural specifications are not distinguished from
methodology for architectural development. Some papers ([Quintero3, page 3], for
example) explicitly say that “methodology” and “architecture” are interchangeable.

Nevertheless, a methodology for architectural development for building RCS systems

is given in at least one RCS paper [Quintero3, section 6], which describes the activities
a control systems developer should do and the types of architectural specifications that
should be produced as a result.

RCS is not explicitly divided into tiers of architectural definition in the literature
describing it, but it seems implicitly to have three tiers below the top level, as shown in
Table 1 on page 9, so that RCS fits that table fairly well.

RCS Control Systems and their Environments

The RCS architecture provides for control of systems which react to events in the
environment. Control systems are expected to have mechanisms for sensory input so
that changes in the environment can be detected. The control system is constantly
monitoring its sensory input to determine when events have occurred in the
environment that it must react to. The processing of raw sensor data into abstract
information about the condition of the environment is termsiaghtion assessment

Once situation assessment has been performed, the control system makes decisions
about what actions should be taken and plans reactively for the events it perceives. The
execution of plans produces the external actions needed to cope with the environmental
changes. An RCS controller continuously performs a sense-decide-act cycle.

Architectural Units of RCS

An RCS system interacts with the environment by sensing conditions in the
environment with its sensors and performing actions in the environment with its
actuators. The internal representation of selected features of the environment and the
state of the RCS system is termed the of the systemwdhé modelingarchitectural

unit governs interactions with threorld model In addition to world modeling and the
associated world model, an RCS system includes three other architectural units. The
four internal architectural units of RCS are:

(1) sensory processingP),
(2) world modeling WM),
(3) behavior generatiofBG),
(4) value judgmentVJd).
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In early papers about RCS, behavior generation is often dak&ddecomposition
(TD).

The sensory processing, world modeling, and value judgment architectural units are
involved in situation assessment, while the value judgment and behavior generation

architectural units are involved in deciding what to do. Figufe“RCS View of an
Intelligent Machine System,” illustrates these conceptual architectural units. The
system includes everything above the lower horizontal dotted line. The world model is
central, since other architectural units rely upon it to provide and accept current
information about the environment. The remainder of the architectural units are
arranged in a clockwise loop, depicting the notion that the system continually repeats a
sense-decide-act cycle.

SITUATION PLANNING &
ASSESSMENT | EXECUTION

PERCEIVED
SITUATION

SITUATION
EVALUATION

STATES
INPUT DATABASE
OBSERVED COMMANDED
INPUT ACTIONS

INTERNAL

ACTIONS

EVENTS EXTERNAL

Figure 1. RCS View of an Intelligent Machine System

8. [Quintero3, Figure 2], [Albus 4, Figure 1], [Hermanl, Figure 5], [Michaloskil, Figure 1]
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In Figure 1, the sensory processing function system (described in more detail in Section
7.1.8) takes sensory data from sensors, interprets the data, and passes the interpreted
data to world modeling.

The world modeling function keeps a description of the environment and the internal
state of the system (the world). It receives information from sensory processing for
updating the world model. It also predicts events and sensory data and answers
guestions about the world model. The world modeling function interacts with the RCS
system'’s database. The database is usually described as a distributed, global database -
in the sense that all data is available throughout the system.

The behavior generation function (described in more detail in Section 7.1.6) makes
plans and carries them out by controlling the system’s actuators.

The value judgment function evaluates both the observed state of the world and the
predicted results of hypothesized plans. It computes costs, risks, and benefits both of
observed situations and of planned activities. The value judgment function thus
provides the basis for choosing one action as opposed to another, or for acting on one
object as opposed to another.

In terms introduced earlier in this report, “task generation” in RCS is performed by the
value judgment and behavior generation function, with input from the sensory
processing module and sensors. “Task execution” is performed within the behavior
generation module of RCS. The following section gives additional details on task
generation and execution in RCS.

Hierarchical Levels in RCS

The behavior generation system in RCS is strictly hierarchical. That is, each controller
responsible for behavior generation has at most one superior and zero to many
subordinates, for the purposes of performing actions. Control levels are typically
refered to by number (numbering from 1 at the bottom, on up) or by a label. Different
applications of RCS have used different labels for these levels, but typically the lowest
level is termed the servo level, next is the primitive level and above that is the
elementary move (or e-move) level.

Superiors interact with subordinates by sending commands to them and receiving status
messages from them. Each controller has a number of tasks that it can carry out, and
these tasks are understood by the superior of the controller.

The RCS architecture decomposes system activities into hierarchical levels. The levels
are characterized by the relative amount of time taken to perform activities and by the
relative spatial extent of the activities. Roughly an order of magnitude change in spatial
and temporal extent is expected between any two adjacent levels, with activities getting
smaller and faster at lower levels of the hierarchy. Between levels, a corresponding
change is also expected in the interval of time over which the system detects and
remembers events. Approximate times corresponding to the RCS control levels are

shown in Figure 2.

9. [Albus4, Figure 4], [Albus5, Figure 22a], [Albus6, Figure 5], [Albus?, Figure 4.2], [Albus8, Figure 2],
[Michaloskil, Figure 3], [Quintero3, Figure 4].
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output update interval = 3 ms

At each control level, the sensory processing, world modeling, behavior generation and

value judgment architectural units may exist. FigLﬂ%iBustrates a six level RCS

architecture appropriate for telerobotic applications. The label TD on Figure 3 and

elsewhere in this section stands task decompositignwhich is a synonym for

behavior generation.

10. [Albus1, Figure 3], [Albusb, Figurela], [Albus6, Figure 2], [Albus7, Figure 1.1], [Albus8, Figure 1],
[Fiala2, Figure 1], [Fiala4, Figure 1], [Herman1l, Figure 6], [Herman2, Figures 1, 4, 6, 7, 14, 18], [Herman3,
Figure 1], [Lumial, Figure 1], [Lumia2, Figure 1], [Lumia3, Figure 1], [Szabo 3, Figure 1], [Wavering1l,
Figure 1]. Many versions of the figure have G instead of SP, M instead of WM, and H instead of TD.
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In considering Figure 3, it must be understood that each rectangle labeled SP, WM or
TD (except those in the top level) normally represents several separate instances of the
given function. That is, there are several TD5 behavior generators that are subordinates
of the TD6 behavior generator, for each TD5 behavior generator there are several TD4
subordinates, and so on down the hierarchy. The situation can be visualized by
imagining that the figure is the front view of a 3-dimensional arrangement, which, when
looked at from the side, is a hierarchy. The version of the figure in [Szabo5] hints at
this, and it is discussed in [Fiala2, section 1].
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SP — Sensory Processing
WM — World Modeling
TD — Task Decomposition
Figure 3. RCS Control System Architecture
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An example of a hierarchy in which there are several SP, WM, and TD boxes at each
hierarchical level below the top is shown in Figure 4 (a portion of Figure 1 from
[Albus2]). This figure shows a control system for a robot with a camera, an active
fixture, and grippers. The robot is subordinate to a workstation level controller not
shown on the figure. Four hierarchical control levels are shown: equipment task, e-
move, primitive, and servo. As noted in the preceding paragraph, there are several SP,
WM and TD boxes at each hierarchical level below the top.

Workstation controller

ipulate Part

e

SP <~—=WM TD

/
M \Mam\pulate Features

Equipment task

SP WM D SP WM Path
planner| E-move
==
Camera path Math F}yture commands
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SP «—=WM TD SP [<—>WM Trajector .
T — % generatdr Primitive
Dynamic path \ \ \
\ \ Y
SP WM Servo SP WM Axis SP WM D
- — ‘Qervo Servo
c Panttilt Joint Joint Fixture Fixture
amerg motors sensors actuators sensors actuators
Robot
Legend

SP — Sensory Processing
WM — World Modeling
TD — Task Decomposition

Figure 4. Example RCS Robot Control Hierarchy
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Tasks and Work Elements

Methods of defining work elements and describing tasks are not strictly specified in
RCS, and different sorts of specifications are used in different implementations. The
most detailed suggestions for task definition are given in [Michaloskil, section 4]. In
general, the RCS papers use the term “task” for what this report calls “work element”.
In most RCS implementations, a work element has a name, and the effect of carrying
out a work element with a given name is specified in some way. It is also usual to
describe the information needed to specify an instance of a work element. In carrying
out an instance of a work element, this information may be passed as parameters to a
command or retrieved from a database. In all implementations, a command to perform
a task may be specified by naming a work element and giving the values of zero to many
parameters which characterize the work element.

Sensory Processing

The sensory processing function of an RCS system takes sensory data at the lowest
hierarchical level, interprets the data, and passes the interpreted data to world modeling.
Sensory data may need to be filtered as it arrives. Sensory data may also need to be
integrated over space (for constructing a map, for example) or time (for speech
recognition, for example). As indicated on Figure 3, the integration of data proceeds
upwards from level to level. In the case of shape recognition in a vision system, for
example, points might be detected at the lowest level and fed upwards where some of
them may be integrated into lines; lines are fed upwards, and some of them may be
integrated into boundaries of (geometric) faces; faces may be fed upwards and
integrated into closed shells of solid objects.

The sensory processing function may be aided by receiving predictions of sensory data
from the world modeling function.

Sensory processing at upper levels may perform data fusion, in which different sets of
data which should be consistent (such as the distance to an object measured by optical
triangulation, radar, and sonar) are reconciled, or different types of data (outline and
color, perhaps) are correlated.

Task Definition and Decomposition

The behavior generation (or task decomposition) process is shown in Fiéi'lre 5
Behavior generation is decomposed into three parts:

(1) job assignmengJA)
(2) planning(PL)
(3) executionEX)

11. [Albus1, Figure 4], [Albus4, Figure 7], [Albus5, Figure 2], [Albus7, Figure 2.1], [Hermanl, Figure 9],
[Huangl, Figure 3], [Lumial, Figure 2], [Lumia3, Figure 2], [Michaloskil, Figure 4], [Quintero3, Figure 5]
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A task is decomposed by a job assignment manager (JA) into subtasks for several
subordinates. The planner for each subordinate (PL1, PL2, and PL3 on the “Spatial
Decomposition” axis in the figure) orders the subtasks in a temporal sequence (the
“Temporal Decomposition” axis). Each subtask is executed by an executor (EX1, EX2,
and EX3 on the figure). The same executor will execute different subtasks at different
times, as indicated by the dotted circles and dotted lines on the figure. The figure shows
what happens at one hierarchical level. The subtasks coming from an executor at one
level become the tasks for the next level down.

Task .
Spatial
Decomposition

Job
Assignment
Manager

Planners
Planning
Executors  (EX C)
Subtasks
Y Execution ‘
Temporal
Decomposition )

Figure 5. RCS Task Decomposition
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Communications

RCS does not specify a standard for communications but anticipates that at lower
hierarchical levels, fast communications will be required. Some RCS papers,
[Quintero3] for example, state that communications must permit input and output at any
time, regardless of current system activities, in order to ensure that sufficiently fast
performance can be achieved. In most implementations, shared memory or some form
of NIST's Common Memory [Libes1], [Rybczynski] has been used.

Standard communications protocols such as Ethernet/TCP/IP [Tanenbaum] or RS-232
[EIA] have been used in RCS implementations for interfacing processes which are not
on a common bus. For mobile applications, radio frequency communications hardware
is also used.

Error Recovery

Automatic error recovery for handling “abnormal” error conditions is discussed in
[Albus5] and [Herman3]. In [Albus5] it is anticipated that if there is a subtask failure,
the executor should branch immediately to a pre-planned emergency subtask while the
planner selects or generates an error recovery sequence. [Herman3] reports an
implementation of a subtask failure re-planning software module.

Conformance Criteria

Although a few RCS papers discuss the issue of conformance criteria, none of the RCS
papers contain any.

The MSI Architecture

The MSI (Manufacturing System Integration) architecture is a product of the

Manufacturing System Integration project which was conducted from 1990-1993
within the Factory Automated System Division. This architecture is the work of the

MSI architecture committee members: Ed Barkmeyer, Steven Ray, M. Kate Senehi,
Evan Wallace and Sarah Wallace.

The architecture is directly applicable to the production of discrete metal parts. Many

of the concepts are more broadly applicable, but a discussion of this is not included in
this summary of the architecture. The MSI architecture focuses upon the operation of a
shop which receives orders and raw materials for the production of parts and in which

each controller can be directly manipula}éd'.he architecture is required to be able to
control a shop with any combination of physical and emulated equipment. Additionally,
the architecture is required to permit the integration of systems not initially designed to
work within the architecture, such as commercial products or university-produced
prototype systems.

12. Other types of manufacturing organizations, such as rework organizations, which receive damaged
pieces to be repaired and must construct custom plans to repair them, or shops which contain autonomous
“subshops” such as tool cribs have been considered by the MSI architecture committee, and found to need
adaptations of the architecture which are not fully developed.
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The architecture draws upon the early work of the AMRF on hierarchical control
[Albus12], [McLeanl], [Simpsonl] and the work of the Manufacturing Data
Preparation Project [Hoppl1] which focused on information required for manufacturing,
particularly process plans and resources.

This section provides a brief description of the second version of the MSI architecture.
Although the second version of the architecture differs somewhat from the initial

version, many of the concepts from the initial architecture still apply. Documentation

for the initial architecture may be found in [Senehi2].

Architecture Overview

The goal of the architecture is to integrate the operation of a shop which manufactures
discrete metal parts. Particular emphasis is placed by the architecture on the integration
of shop planning, scheduling and control functions in both nominal and error situations.

The architecture does not attempt to provide enterprise integration. In particular, it does
not describe information needed for business decisions, such as whether to buy or

manufacture a pa?“ﬁ

The architecture approaches integration by identifying the systems in the shop which
need to be integrated, examining the interactions among the systems, and proposing
mechanisms to ensure that these systems function in a cohesive manner.

MSI Architectural Units

The MSI architecture identifies a number of systems which are normally part of the
shop production environment. The architecture defines architectural units
corresponding to each of the shop systems identified, characterizing each system by the
functions which it performs. The MSI architecture avoids specifying the internal
structure of any of the architectural units. This approach facilitates building
implementations of the architecture which use systems which were not designed
specifically to work within the architecture.

The architectural units which correspond to shop systems and their functions may be
summarized as followk*
(1) Part Design—which creates the designs for parts, associated fixtures and jigs,

(2) Process Planning—which creates step-by-step plans or numerical code for
manufacturing a part and its associated fixtures and jigs, according to the part
design,

(3) Production Plannir'k?—which selects batch sizes, specific machines, and
scheduled times to perform the tasks specified by a process plan,

13. It does permit the user to include technical information such as cost functions for use in determining the
way in which an order is filled, or scheduling and quality parameters for the parts being generated.

14. Additional systems may, of course, be part of a manufacturing system, but these have not been
considered in the formulation of the architecture.

15. Schedulers are one type of production planning system.
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(4) Controllers—which perform manufacturing tasks,

(5) Order Entry—which permits entry of orders which direct a shop as to what
to make and when to make it,

(6) Configuration Management—which identifies and controls shop resources
and capabilities,

(7) Material Handling—which routes and delivers material throughout a shop.

Interactions of Architectural Units

Most architectural units aleosely coupledthat is, they share information, but their
activities do not need to be coordinated except to ensure the integrity of the information
they share. In this report, this type of interaction is cafidatect interaction

In indirect interaction, the shared information is stored in a known location (e.g., a
memory location, database, file, variable), and components (of an implementation) may
be given access (e.g., read, write, no access) to the information as required.
Components which have access to the same information need not be known to each
other, and need not acknowledge any access or change of the information by any other
component.

In order to integrate architectural units which interact indirectly, the MSI architecture
specifies that it is sufficient to describe the shared information at a conceptual level, and
provide guidelines for the access of the information. The description of the shared
information is given through a number of information models. The information models,
and the guidelines for information access form the information architecture of the MSI
architecture. This will be discussed in detail in Section 7.2.2.

The production planning and control architectural unitsightly coupledthat is, they

must interact more closely than through the passive sharing of information. To
understand the interactions of these architectural units and the MSI solution to
integrating them, it is necessary to understand the MSI perspective on task generation
and execution in a shop.

A shop’s function is to manufacture products to fill the orders which it has received.
The orders are for some number of a specific product, which is described by a design.
For each design, arocess planis formulated. The process plan gives detailed
instructions on how to manufacture the product, using classes of resources. For
example, a process plan might say “This step requires a three-axis milling machine,”
rather than “This step requires machine XYZ001.” When an order is received for
making a number of a product, an appropriate process plan is retrieved or generated, the
order is broken into batches for manufacturing and for each batch, the specific resources
for product production are selected and the plan and the resources are scheduled. The
end result of performing these operations is a production plan which contains all
necessary information for the making of the product. When the scheduled time for the
start of manufacturing of the batch arrives, the controllers in the shop interpret the
production plan and perform the work to manufacture the product.
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In performing the work of manufacturing the product, the activities of controllers must
be coordinated. This is accomplished by using two mechanisms. First, as described
above,production plansare generated which schedule the activities of each of the
controllers in the shop. Secondly, controllers are connected in a control structure that
provides support for integrated start-up, shutdown, emergency stopping, and affecting
the disposition of tasks generated from production plans. The MSI architecture requires
that the controllers in the shop be arranged in a hierarchical control structure.
Commands are transmitted form superior controllers to their subordinate controllers,
and subordinate controllers send status information to their superiors. Interaction
through a command-and-status mechanism is refereddiceasinteraction

Thus, the integration of the tightly coupled planning and control architectural units
requires both indirect interaction through the process and production plan information
and direct interaction through a control hierarchy. The representation of the information
for process and production plans is discussed in Section 7.2.2. The control structure is
discussed in Section 7.2.3.

7.2.2 Information Architecture

As previously mentioned, the MSI architecture states that for indirect interactions
among architectural units, it is necessary only to describe the shared information and
the information access characteristics (i.e., which components can access which
information and what type of operations the components can perform). The following
sections discuss each of these in turn.

7.2.2.1 Information Models

The information needed to integrate the manufacturing shop is highly interconnected.
The Integrated Production Planning Information Model describes the manufacturing
environment at a high level of abstraction. This model shows the relationships among
product design, shop resources, plans, shop configuration, and shop status. Detailed
models were made for process and production plans, resource types, orders, tools, shop
status, and shop configuration. Following is a brief summary of the information models
in MSI. More details of the process plan model are available in [Catronl]. Details for
other models are available in [Barkmeyer2] and [Rayl]. The specification of product
design is imported from the information models generated by the International
Standards Organization Technical Committee 184, Subcommittee 4 (ISO TC184/SC4)
[1ISO3].

7.2.2.1.1 Plan Models

Process, production managed, and production plans are key vehicles by which
information is shared between planning and control architectural units in the MSI
architecture.

A process plan designates the steps necessary to make a part, specifying the sequence(s)
of operations by which a part is made and the relative timing of these operations. As
received from the engineering systems, process plans should contain a number of cost-
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effective alternatives which take into account the resources of the local production
environment, but not the status of such resources. Process plans are directed graph
structures which may express both alternative and parallel paths of part production, and
sets of potential resources for part production. Process plans provide for
synchronization of operations by several mechanisms and support hierarchical
decomposition of operations as well. This definition differs from the traditional use of
the term “process plan” in that alternatives are expressed within a single plan and the
plan may specify resources by their class instead of specific instances.

A production managed plagives the plan for producing a batch of parts and is derived
from the process plan for making that type of part. One or more alternatives from the
process plan is selected and material handling steps are placed where needed.

A production plan is constructed from the production managed plan by selecting,
scheduling and planning for the allocation of the specific resources, and refining the
material handling planning necessary to move the batch of parts from one resource to
another. Since production managed and production plans are constructed with reference
to a process plan, it is obvious that their representations are logically, if not physically,
linked.

Production plans are parsed by controllers. In parsing a production plan, a controller
may request information from databases, make judgments on which alternative to take
based on this information, produce commands to direct subordinates to perform
manufacturing tasks, or perform manufacturing tasks.

Resource Model

The resource model contains a physical and functional description of resources
available in the shop. It contains templates for all such resources (e.g., machine tools,
robots), information on shop floor configuration, and status information on shop
systems. In addition to the typical physical resources and equipment expected in a
resource model, the resource model incluo@ssumable resourcgsuch as coolant

and solder) andbgical resourcesvhich are pieces of information which have been
created to assist the production management and control functions. Items from the
resource model are used in both the process, production managed and production plans.

The models necessary for shop integration are given in the table below.
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Table 3: MSI Information Models

Model

Description

Product Model

Specifies information needed to describe the parts
manufactured; includes information needed to create a solid mo
the part, to describe manufacturing features, and to specify de
information about tolerances.

Process Plan Model

Describes plans which give the steps necessary to make a sif
specifying the sequence(s) of operations by which a part is mad

being
del of
tailed

1gle part,
e, the

relative timing of these operations, and classes of resources required.

Production Managed
Plan Model

Describes plans for producing batches of parts along with ro
information and is derived from the process plans for making {
types of parts.

Production Plan
Model

Describes fully developed plans for making batches of parts|

plans include specific resource selections, allocation and schg
for part production.

uting
hose

the
rdules

Resource Model

Contains a physical and functional description of resources av
in the shop. Resources may be physical or logical.

ailable

Order Model

Describes information about orders; includes the type of the par
manufactured, the quantity to be made and identifies inform
needed to record the engineering status and production status
order.

t to be
ation
of the

Inventory Model

Specifies information needed about stock (e.g., part blg
consumable machining supplies, free carriers, and completed p4
longer in-process. Such information includes type, quantity, locg
etc.

ANks),
\rts no
tion,

Configuration Model

Describes the relationships between controllers, schedule
network entities.

s and

Materials Model

Describes the characteristics of raw materials, stock, and cons

umable

machining supplies.

7.2.2.2

Data Storage and Access

The MSI architecture specifies that information which must be shared among
components be placed in a data storage location which is accessible by all components
which need this information. The architecture does not specify the data storage
mechanism. Options include files, variables, memory locations, databases, etc. MSI
permits both physically distributed and centralized storage. The access method
typically depends on the storage mechanism and may be different for different data,
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depending upon which components need to share the data. Different access privileges
to each item may be accorded to different components. In some cases, multiple
components may be able to write the same data.

The architecture states that it is desirable that the physical and logical location of the
data be invisible to components of an implementation of the architecture insofar as
practically possible within performance constraints. The architecture also permits
components to make local copies of shared information, but states that in this case, the
component is responsible for maintaining consistency between the local copy and the
public copy of the shared information.

At present, the architecture does not specify which systems should access each specific
item of data. This omission was intentional, to give implementors of systems more
freedom. Such a specification is a possible enhancement of the architecture and would
aid vendors in constructing systems that could be made interoperable.

Control Architecture

In the MSI architecture, the control architecture provides for the integrated start-up,
shutdown and maintenance of the controllers in the shop and provides a mechanism for
performing operations on tasks such as starting, aborting, temporarily halting and
resuming them. It is through the control architecture that errors in planning and task
execution are discovered and repaired. The basic tenets are discussed in the following
sections.

Levels of Control

In the MSI architecture, control levels are arranged in a hierarchical tree structure. The
hierarchical control structure has a single highest-level controller. Every other
controller has exactly one superior controller from which it receives commands, and

zero or more subordinate controllers to which it may issue commérsie Figure 6
for an illustration of sample permitted control trees.

In the MSI architecture, the highest level controller isshep controller The shop
controller has general responsibility for all production processes involved in filling
orders. The coordination of all orders for parts, determination of global scheduling
constraints and creation of routings for part delivery are done by the shop controller.
However, many details required to fill these orders are the responsibility of subordinate
controllers and are not visible to the shop controller.

16. The reason for this constraint on the hierarchy structure is related to the mechanisms for recovering from
errors. Should multiple supervisors be allowed, there world be no guarantees that any single controller in the
hierarchy has a complete picture of the subordinate controller’s status, making error recovery extremely

difficult.
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Equipment is controlled by sequipment controlleBy definition, an MSI equipment
controller can execute only one task from its superior at a time; any internal task
decomposition by an equipment controller invisible to the MSI architecture. Equipment
controller tasks are items such as loading a part, opening a vise, or manipulating the
spindle of a machine tool, depending on the particular equipment.

Between the shop and equipment controllers there may be any number of controllers,
calledworkcell controllerswhich coordinate the activities of two or more subordinate
controllers, each of which is either an equipment or a workcell controller. The number
of controllers between a given equipment controller and the shop controller remains
unchanged regardless of the tasks being executed. This number specifies the level of
control for that controller, and may be different for different equipment controllers
depending on the complexity of coordination necessary. See Figure 6 for an example.

Shop
Controller
Workecell Workecell
Controller Controller
ment Equipment Equment Pment
Con roIIer Controller Controller Con roller

(a) This is an example of a control hierarchy, in which the number of
levels between each equipment controller and the shop controller is the same.

Shop
Controller
Workcell Workcell
Controller Controller
ment ipment Workcell Equment
Con roIIer Con roller Controller Controller
Equipment Equipment
Controller Controller

(b) This is an example of a control hierarchy in which the number of
levels between equipment controllers and the shop controller differs.

Figure 6. Examples of Valid MSI Control Hierarchies
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In most cases it is expected that, once established, the control hierarchy will remain
fixed as long as the shop is in operation. In some cases, it is possible to reconfigure the
control hierarchy dynamically. It is intended that dynamic reconfiguration will only be
used to remove a dysfunctional equipment controller or to bring new equipment on line.
In any case, at any fixed time the MSI architecture specifies that thereibglex
control hierarchy originating at the shop controller.

Task Generation and Execution Process

In the MSI architecture, the execution of manufacturing tasks is a result of the parsing
of production plans. For each controller involved in making a product, a production
plan must be available to tell the controller what task to perform and when to perform
it. Production plans are generated from corresponding process plans. Therefore, the
hierarchical organization of process and production plans mirrors the hierarchy of
controllers in the MSI architecture.

For each part design, process plans must be constructed for each level of the
manufacturing hierarchy. Although process plans contain similar structure at all levels,

distinct types of operations are performed at each level which are unique to that level.
Listed below are descriptions of the operational characteristics of process plans at
levels pertinent to the MSI architecture.

e Shop Level
At the Shop Level, process plans primarily address the movement of
workpieces and sequencing of different types of machining operations, such
as turning, milling, etching, etc.

» Workcell Levels
Workcell Level process plans prescribe the coordination of controllers
subordinate to a given workcell, such as the use of a robot to load a machine
tool table. Such plans can require extensive use of synchronization between
process plans for subordinate controllers.

» Equipment Level
Equipment Level process plans describe the most detailed level of operation
that a process planner would generate. In this case, the activity called process
planning in MSI terminology overlaps with what is usually termed off-line
programming. The steps within such a plan provide instructions which are
carried out by individual pieces of equipment. Example operations within the
domain of metal cutting might include steps sucldiaé hole or chamfer
edge The degree of detail required in such a step depends on the capability of
the controller. If the controller possesses sophisticated capabilities, higher
level instructions such as those above, or even as abstraetdagart and
fixture part might be sufficient. If the controller is less capable, instructions at
the level of numerical code may be required.
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While the specification of the task is gleaned from the process and production plans, a
controller will not perform the specified task unless it is instructed to do so by its

superioi”. This permits the supervising controller to remain in control of the execution
of the task by its subordinate. The ability of the supervising controller to manipulate the
execution of the task by its subordinate on a gross level (such as stopping or aborting
the task) aids greatly in handling scheduling and execution errors.

Error Recovery

In an error-free environment, the relationship between planning and control is
straightforward. When errors occur, this relationship is greatly complicated and the
ability of the control system to recover from an error is intimately related to the
capabilities of the planning and controller systems. The MSI architecture explores error
recovery from specific types of errors in the shop in detail, extracts requirements for the
planning and control systems and devises interfaces which support error detection and
recovery. These aspects of the architecture are detailed in the following sections.

Error Scenarios

Errors can be grouped into three different classes based upon their cause: resource error,
task error, and tooling error. A resource error occurs when a piece of equipment, whose
controller is part of the control hierarchy, becomes impaired (e.g. the machine tool
changer jams). A task error is an error which affects a specific task only; the resource
on which it is being performed is unaffected (e.g., if the robot drops the workpiece, the
robot is unaffected). While a resource error usually causes a task error, task errors may
occur without a resource error. A tooling error occurs when a tool is damaged (e.g., a
cutter breaks) or unavailable (e.g., the tool was not delivered at the proper time). Tools
differ from other resources in that they are not permanently associated with any
member of the control hierarchy, but are moved from resource to resource as needed.

The MSI architecture committee examined a number of error scenarios from both the
task and resource error categories. It was observed that the use of a hierarchical control
system facilitates the localization of task error handling. When an error occurs in the
execution of a task, if it is possible to resolve it by affecting only subtasks of the task,
controllers at all levels of control above the superior controller are unaffected by the
error. If localized error recovery is not achieved at this level of control, the recovery for
the error is handled by the next higher control level in the hierarchy. At each level, there
is potential for error resolution. Only in the event that the error cannot be resolved at
any lower level is a global solution to the error required.

17. The Shop level controller is a special case. The architecture specifies that there is an entity which checks
to see if a new order has arrived and which then selects and passes the appropriate production plan to the
Shop controller. In an implementation, the previously described entity may be a separate component, or may
be within the Shop controller.
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For the error scenarios considered, methods of recovery from scheduling errors and
equipment failures were examined and incorporated into the specifications for the
functionality of architectural units and the interfaces of the architectural units in the
control architecture. This is discussed briefly in the following sections. More details on
error-handling in MSI are available in [Wallacel] and [Senehi3].

Planners, Controllers and Control Entities

Analysis of the error scenario reveals two capabilities which a production planner must
have in order to be effective. The first and more general requirement is that the
production planner must be able to do re-planriRegplannings the ability to localize

the error to a subset of the tasks and only re-plan those which are affected.

If a re-planning capability does not exist, automated error recovery will be extremely
limited. The production planner must schedule for the entire shop again. The
availability of resources can be fed back into the scheduler, but the scheduler can not
plan for the completion of partially executed production plans. Human intervention is
required to avoid scrapping everything in execution when an error occurs.

The second requirement is the need for the production planner to work with a
hierarchical control system. In order to localize an error at a given level of the
hierarchy, the production planner must be able to plan for that level. Additionally, it
must be possible for the production planner to be informed that a resource or task error
has occurred at a given level, and re-planning may be necessary.

Error information which is needed to re-plan must be made available to the production
planner (e.g., how many minutes late a machining task is expected to be). As a
minimum, the production planner must be able to be notified by the shop controller that
a resource or task error has occurred and re-planning may be necessary. It is the
controller’s responsibility to notice the error and inform the production planner; the
production planner does not monitor either the health of the controller or the execution
of tasks. Beyond these interface requirements, the internal architecture of the
production planner is not specified.

When an error occurs, a controller may apply any strategies it has available to repair the
problem. If these local efforts at correcting the problem fail, the controller must hand
the problem to its superior for correction. In order for a controller to participate in error
recovery involving its superior, it must be able to:

(1) detect when a subordinate has failed,

(2) detect when a subordinate’s task is late,

(3) abort task execution,

(4) halt task execution and retain information to restart later,

(5) restart task execution from previous point,

(6) halt task execution and discard all information related to the task,
(7) halt task execution and regard the task as complete,
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(8) estimate task completion time, and alter task execution based on new
parameters (e.g., new start, completion times).

The inability of either the production planner or the controller to perform any of the
indicated functions does not prevent a production planner or controller from being
integrated into a control system for a shop using the architecture, but it does weaken the
recovery ability of the system.

7.2.3.3.3 Control Entities
Since effective participation in the error recovery mechanism requires both a
(productiort®) planner and a controller, the MSI architecture defines an architectural

unit called acontrol entity which consists of a planner and its associated contrdller.

It should be emphasized that the control entity is a logical, rather than a physical
architectural unit. The planner in the control entity is required to support scheduling of
plans and the allocation of resources, and may support process planning and batching.
The controller must support task execution and may have any level of intelligence
desired.

Since process planning systems, production systems, and controllers are not likely to be
capable of fully supporting error recovery in the near future, a mechanism for external
intelligent intervention is included in the MSI architecture. Throughout this document,
the intelligent agent will be referred to as the guardian.

The MSI architecture requires interfaces for any control entity in the architecture and
contains detailed specifications for each of the interfaces. In the following sections, the
communications mechanisms for control entities, the interfaces of the control entity,
and the physical distribution of a control entity will be discussed in turn.

7.2.3.3.3.1 Communications of Control Entities

All communications between control entities which are direct (see Section 7.2.1.2), are
required by the MSI architecture to be via a command and status interface. Such
interfaces require communications channels between components. The MSI
architecture requires that the communications channels for command and status
messages use a point to point, guaranteed message communications paradigm. One
communications mechanism that provides such a communications service is the
Manufacturing Automation Protocol (MAP) [MAP1], [MAP2], with the
Manufacturing Messaging Specification (MMS) application layer [ISO1].

Since message delivery is guaranteed, messages can rely on information conveyed in
previous messages. This means that messages need not contain all the information
required for a complete picture of the situation, reducing the amount of data which must

be transferred with each message. As a consequence of point to point communications,

18. The planner specified here is the production planner architectural unit. However, we will refer to it as
planner in the remainder of the discussion.

19. The architecture permits hierarchies of planners without associated controllers. These hierarchies would
only be needed for “what if” scenarios and would not need error recovery capabilities.
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the communications pairs must be set up when the connections are established, and it
is not possible to hide the way in which communicating control entities are physically
distributed.

7.2.3.3.3.2 Control Entity Interfaces
A control entity may have as many as five types of interfaces. These direct interfaces

are:
(1)
(2)
®3)
(4)
()

a planning interface—which governs interactions of superior and subordinate
planners concerning the selection, generation and scheduling of process,
production managed and production plans,

a controller interface—which govern interactions of superior and subordinate
controllers concerning task execution,

a guardian to planning interface—which governs how an intelligent agent
may interact with the planner,

a guardian to controller interface—which governs how an intelligent agent
may interact with the controller,

a planner to controller interface—which governs how the planner and the
controller may interact in both ordinary and error situations.

A detailed specification of each of these interfaces is found in [Wallacel]. A conceptual
view of the potential direct interfaces is shown in Figure 7 [Wallacel].

In an implementation of the architecture, which interfaces must actually be supported

is determined by the physiggldistribution of the control entity. The general rule is
that, if the two interacting components are physically distributed, the exposed interface
must conform to the corresponding interface specification.

7.2.3.3.3.3 Physical Distribution of Control Entities

Permitting flexibility in the physical distribution of the control entity allows the MSI
architecture to accommodate a number of common configurations for planners and
controllers. Examples are:

1)

)

A centralized planning system may be used, provided that each controller has
a logically distinct interface to the planning system and that the planning
system can plan for each member of the hierarchy. In this case, the internal
functioning of the planner is not made public, but the interfaces among
controllers and between a controller and its planner are exposed. This
configuration is shown in Figure 8.

A distributed planning hierarchy which mirrors the control hierarchy may be
used. In this case, the interfaces between planners, between controllers, and
between each controller and its planner are public and must conform to the

20. Architectural entities are considered to be physically distributed whenever they consist of two or more
(operating system) processes or have portions which execute on physically distinct processors.
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P—P

Control Entity

P—C
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Legend
P—Planner

C—Controller
G—Guardian

Figure 7. MSI Control Entity Interfaces

3)

MSI interface specification. Figure 9 shows this configuraﬁon

The planner and controller functions may be embedded in a control entity,
resulting in a single hierarchy of control entities. In this case, the interfaces
between the planner portion of a control entity and the planner portion of both
its superior and subordinate control entity are public, and the corresponding
controller interfaces are public, but the interface between the planner and the
controller of any one control entity remains private. Figure 10 shows this
configuration.

In Figures 8, 9 and 10, the control entities are homogeneous (i.e., they all split or
combine their component planners and controllers the same way). The architecture also
allows the use of heterogeneous control entities.

21. Note that, in fig

ures 8, 9 and 10, the interface between the planner and the controller are shown only in

the highlighted areas.
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7.2.4

Conclusion

The MSI architecture provides an architecture for a shop which manufactures discrete
parts that supports information integration for the major shop systems and provides
specifications for an integrated production planning and control environment. The MSI
architecture can be used with a centralized or a distributed planner, and other
combinations of control and planning systems.

The operations of a shop are guided by the schedules generated for its current orders.
This mode of operation encourages global optimality for shop production, since local
schedules are constrained to accommodate the needs of the factory. Since the shop
schedule is important to efficient functioning for the shop, the architecture provides for
schedule maintenance via detailed sets of command and status messages for controller
and planner interactions. The use of hierarchical control aids in localizing and
recovering from scheduling errors.

It is anticipated that the MSI architecture will be useful both for the integration of
current shops and in future research. The information models are immediately
applicable to aid in shop integration, while the interface specifications provide direction
for further research in automated re-planning and control.
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Compatibility Assessment of MSI and RCS Architectures

Two architectures are most compatible when it is possible to take systems which were
built according to the specifications of one architecture and use them, with minor
modifications, in a system built conforming to the other architecture. Two such
architectures are said to imeroperable If this is not possible, it may still be possible

to build other architecture(s) for specific purposes using features from both
architectures.

We will present a discussion of the interoperability of the two architectures, then a
summary of the detailed point-by-point comparison of the MSI and RCS architectures
according to the issues identified in the previous sections. The full text of the point-by-
point comparison is available in Appendix C. Finally, we present our conclusions
concerning the degree of compatibility of the two architectures.

Interoperability Assessment

One way to assess the interoperability of two architectures is to compare how current
implementations would be able to function together. Suppose we took an
implementation of RCS aimed at machining discrete parts, and we tried to get it to work
together with MSI by making an RCS controller subordinate to an MSI controller. We
chose this mode of knitting the two control systems together as the one with the highest
probability of success, since the MSI architecture specifies a method of including black
box controllers in the hierarchy and anticipates this method of inclusion for real-time
systems.

We would have to agree on a mechanism for communicating between the RCS
controller and the supervising MSI controller. To do this, a front-end for the RCS
controller must be made which exhibits the MSlI interfaces to the superior controller and
planner and communicates to the MSI control entity using a compliant communications
system (such as MMS). The front end would also have to communicate with the RCS
controller using the communications mechanism which RCS expects.

Such a front end must have considerable functionality. It must be able to translate
command and status information between MSI and RCS formats, filling in
appropriately if adequate information is not available, or dropping extra information.
The front end would have to interpolate the status of the resource, controller, and task
well enough to populate the expected parts of the MSI information base. Finally, the
front end would have to neutralize the cycle-time difference between the RCS
controller and the MSI controller by responding appropriately in real time.

An interface is therefore possible. However, the real question would be what value can
be derived from such an arrangement. The real-time capabilities of the RCS controller
would clearly be preserved, and the controller would be integrated into the factory’s
information and control structure via the MSI architecture. However, the ability of the
system to recover from errors depends on the sophistication of the front end and the
abilities of the RCS controller. To participate in error recovery, the MSI architecture
expects that a controller can perform the following functions:
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(1) abort task execution,

(2) halt task execution, and retain information to restart later,

(3) restart task execution from previous point,

(4) halt task execution and discard all information related to the task,
(5) halt task execution and regard the task as complete,

(6) estimate task completion time,

(7) alter task execution based on new parameters (e.g. new start,
completion times),

(8) provide a guardian interface for human/intelligent intervention.

The RCS controller specification says nothing about any of these functions, other than
providing a human interface. Hence, it is not clear whether an RCS controller would be
able to support some of the functionality MSI expects. As an example, suppose a
controller cannot provide estimated task completion times. If the controller provides
enough information for the front end to accurately estimate the completion time, then
recovery from scheduling errors can proceed as usual in the MSI scenario. If there is no
reasonably accurate estimate of the completion time, the error recovery scenario will
not be activated until the supervising MSI controller notices that the task is late. If the
controller can not respond by disposing of the task as the superior controller directs, the
error recovery mechanism is compromised.

Similarly, the ability of the RCS controller to use and provide the information required
by the MSI information services will determine the degree of integration the RCS
controller achieves with the factory.

In summary, one can say that the ability of the RCS and MSI controllers to be coupled
in this way depends on features of the RCS controller which are not mandated by the
RCS architecture. It is unclear whether these functions could be required of RCS
controllers. Conclusions on this matter require in-depth study of the functional
capabilities of RCS controllers.

Summary of Point-by-Point Comparison

Given that the two architectures are not a priori interoperable, we proceeded with a
point-by-point comparison of the two architectures to determine where the
architectures are similar and where they differ. This section presents a summary of the
point-by-point comparison.

Intended Domain

Many of the differences between the MSI and RCS architectures stem from differences
in intended domain. RCS'’s primary focus is on uses which require real-time response
and in which the domain is unstructured and highly changeable. MSI’'s primary focus
is on timely (but not real time) control in a highly structured, relatively predictable
manufacturing environment.
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MSI and RCS both apply to the control of systems, but in addition, MSI has connections
to maintenance, orders, and other concepts external to the system.

Conformance Criteria

The conformance criteria for the two architectures are fundamentally different.
Conformance to the RCS architecture consists of obeying certain basic tenets, which
involve both external behavior of the architectural unit and internal decomposition of
the architectural units. Most of the tenets are loosely stated and subject to interpretation.
Conformance to the MSI architecture consists of displaying architectural units which
understand specific information, exhibit certain interfaces and provide specified
functionality. The emphasis of MSI upon external characteristics, rather than internal
structure makes the inclusion of manufacturing systems not originally designed to work
with the architecture possible.

Domain Analysis

The MSI architecture provides the results of information analysis for the architecture
implementor’s use in the form of information models. RCS provides sample task
decompositions and data descriptions for the information required at the servo and
primitive hierarchical levels of the architecture. In addition, RCS provides
requirements which are aimed at ensuring that compliant controllers have the required
real-time capability.

Neither MSI nor RCS requires any formal domain analysis. However, in both cases,
some analysis must be done to determine a proper control hierarchy and task
decompositions.

Controllers and Other Architectural Units

Both MSI and RCS have architectural units from which an implementation of an
architecture is built. Primary among these units are the units which perform scheduling
functions and units which perform task execution and monitoring functions. In MSI
these architectural units are called planners and controllers; in RCS these modules are
called planners and executors. A major difference in functionality here is that MSI
assumes that plans exist a priori (although they may be adjusted at run-time) whereas
in RCS, plans may be constructed at run-time. This difference is a direct result of the
different environments for which the architectures are intended.

In addition to the basic task execution functions, the MSI architecture suggests that the
eight additional functions listed earlier be available to permit full use of the
architecture’s error recovery capabilities.

Beyond the functional requirements, the MSI architecture imposes strenuous interface
requirements for the controller/scheduler interfaces. These interface requirements
assume certain internal information is available, and that certain sequences of
messaging be followed (although in some cases, more than one sequence is permitted).
RCS has no similar interface requirements above the implementation level.
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In addition to specifying the basic planner/controller architectural units, RCS defines
other functions which must be present either as submodules within the controller or as
architectural units. These are sensory processing, behavior generation and value
judgment. These functions permit the control system to query about the world, evaluate
the results of queries, make predictions based upon current information and make
decisions based upon values.

The MSI architecture does not explicitly address the functions of behavior generation
or value judgment, but expects these to be embedded in the planners, the controllers, or
the guardian interface at the discretion of the implementor. MSI does not address
sensory processing at all, whereas RCS has made elaborate provisions for it.

Both RCS and MSI permit human intervention into the control system. In MSI this
intervention is tightly formalized, in RCS more implementation choice is given.

Collections of Controllers

Perhaps one of the greatest differences between MSI and RCS is the way in which
“atomic” entities can be combined. MSI permits any combination of scheduler/
controller units or controller/controller and scheduler/scheduler units to be combined
into a block which must exhibit appropriate interfaces. As shown in figures 8, 9, and
10, MSI permits controllers and their related planners to form separate hierarchies (in
fact planning is not necessarily hierarchical). RCS, on the other hand, requires certain
canonical ways of combining the functions together. It is assumed in RCS, for example,
that controllers and their related planners are always linked together, so there is always
a single control hierarchy.

Required Data and Data Handling

Both RCS and MSI have a requirement for information which describes aspects of the
environment and internal information about the control system.

A major difference between MSI and RCS is the way in which controllers expect to get

information from the environment. MSI expects that there are a great many relevant
environmental variables which have to be monitored and so proposes interrupt
mechanisms be available to inform the control system of important changes. Versions
of RCS vary in this aspect, but some versions require that environment variables be
sampled cyclically. The two mechanisms are fundamentally incompatible and a

resolution must be reached in order to build an architecture which accommodates both
types of controllers.

MSI expresses the data it requires in information models. Implementation of the data in
memory, databases, and files is not specified, although an (accessing) scope may be
defined. RCS has similar specifications for data at the servo and primitive hierarchical
levels, for specific classes of machinery. RCS has only sketchy suggestions for data
handling, but often says that the database should be global, and all data which is not
local must be globally accessible. MSI does not require that all non-local data be
globally accessible.
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MSI expects all data handled by the control system to be symbolic or numeric, and says
nothing about how such data should originate. RCS expects the control system to need
to process sensor data, and makes sensory processing one of the major focuses of the
architecture.

Communications

MSI requires that the communications mechanism for status and command messages
be point to point and guarantee message delivery. The MAP and MMS communications
standards provide such services.

RCS does not specify a standard for communications but anticipates that at lower
hierarchical levels, fast communications will be required. In most implementations,
shared memory or some form of NIST's Common Memory has been used.

Interestingly, NIST's Common Memory can be made to provide point to point and
guaranteed message delivery, while MMS was designed to provide real-time data
delivery for controllers.

Task Generation and Execution

MSI and RCS have fundamentally different notions of how tasks are generated. MSI
assumes that all tasks originate as the execution of a plan which has been made in
advance (although it may be dynamically altered). MSl is designed to explicitly provide
for scheduling and allocating resources for tasks. Some versions of RCS assume that
the plan is constructed as it is executing, based upon the current states of the controller
and the task being worked on. Scheduling and resource allocation are not specifically
addressed. Both architectures permit adapting the plan during execution.

Both architectures postulate the existence of work elements, which are units of work for
a controller. RCS includes the semantics of these work elements within the architecture,
while MSI insists that the semantics of the work elements are in the domain of the

implementation.

Both architectures agree that task decomposition and the distribution of tasks among
members of the control hierarchy are desirable. RCS includes a number of specific
guidelines for task decomposition, MSI concludes that tasks should be decomposed
whenever an intermediate degree of coordination is desirable.

Error Recovery

MSI makes error recovery one of the main facets of the architecture. MSI defines
sequences of command and status messages to recover from scheduling errors, resource
failures, and task failures. RCS permits adaptive control but does not address other
errors explicitly.
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Conclusions and Compatibility Assessment

In this section we distill some key features of an architecture’s domain which affect the
architecture from the foregoing discussion and present general conclusions regarding
the compatibility of RCS and MSI.

Key Features of a Domain

Several features of the domain to which a control system is intended to apply
profoundly influence the selection of appropriate components for the architecture of the
control system.

Boolean Features

There are three features of a domain which make a qualitative, rather than a quantitative
difference in an architecture. There is no middle ground in providing for these features.
Either an architecture provides support or it does not. These are:

1. whether resource contention occurs,

If resource contention occurs, the architecture must make provisions for tracking
resource status and availability. The architecture must also include mechanisms for
different types of allocation and locking for resources. Being able to forecast

availability is also very desirable in such domains.

2. whether the control system must be able to respond in hard real time (i.e. a response
must be generated within a specific time slice),

If hard real-time response is required, the communications system and data access must
be geared to providing service within a specified time slice. As applied to software, the
hard real-time requirement means that it must be known in advance what code is to
execute and an upper bound must be available on the amount of time in which it
executes. In particular, the time which it takes to retrieve relevant data must have an
absolute upper bound. This argues strongly for limiting the amount of data which needs
to be accessed and disallowing ad hoc queries for information.

3. whether commercial systems whose internals may be unknown must be controlled
by the control system.

If inclusion of systems whose internals may be unknown is a driving force in an
architecture, then the architecture will avoid specifying the internals of the atomic units
which it defines and will concentrate on specifying the external functions, interfaces
and dynamic characteristics which the atomic unit displays.

Continuous Features

In addition, there are a number of features of the domain which make quantitative
differences in the architecture. In the case of these features, there are differences in the
degree to which the architecture supports it. These are:

1. the variability of the physical environment in which the control system must
function,
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The more variable the environment, the more important current information about the
environment is. In such an environment, accurate updating of such information will be
a priority. In some cases, this will mean that sensory processing will be a priority.

2. the degree of structure of the physical environment in which the control system must
function,

In an environment which is unstructured, it may be impossible to generate even
tentative plans in advance, as the formulation of each step depends on current
conditions which cannot be known in advance. Such control systems typically use goals
to direct the generation of appropriate plans. For highly structured environments, likely
courses of action can be anticipated and encoded in plans in advance of execution.

3. the degree of integration with the organizational environment which the control
system must provide,

In some applications within the domain, the control system must be integrated with
other systems, such as business systems. In these cases, information interchange and
access control must be implemented for the integrated systems.

4. the degree to which the control system must be reliable and fault tolerant,

An architecture must provide for reliability and fault tolerance throughout. The
architecture must provide mechanisms for realizing when errors occur and for reporting
and resolving them. If an architecture is constructed assuming flawless operation and
data, it is difficult, if not impossible, to acquire the data to perform error recovery.

5. the degree to which the dynamic reconfiguration of the control system is supported.

An architecture may need to provide for changing the control hierarchy of a control
system. At one end of the flexibility spectrum, this may have to be accomplished by
halting the control system, reconfiguring it and restarting. At the other end of the
spectrum, the control system could be reconfigured without affecting most executing
tasks at all. If a great degree of flexibility is required, the architecture must provide for
managing the internal states of controllers and be capable of managing tasks in process.

7.3.3.2 Conclusions

With regard to these key features, MSI provides for the inclusion of commercial
systems in an environment which is moderately variable and highly structured (the
factory floor). It provides a high degree of integration with other systems and permits
dynamic reconfiguration to correct for impaired equipment. The architecture contains
methods for handling resource contention. The MSI architecture specifically addresses
error recovery for resource problems, scheduling difficulties and task failure. RCS
provides for hard real-time control and operation in a range of environments, from the
highly structured to the highly unstructured, which may be highly variable. By
permitting sensor feedback and intelligent response, RCS provides for reliability and
fault tolerance in task execution.

It is clear that the MSI and RCS architectures are not perfectly compatible. However,
many of the differences are the result of differing domain requirements. MSI and RCS
strengths and weaknesses complement each other.
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Outline of Proposed Reference Architecture

This section discusses a proposed joint architecture which serves the purposes of (at
least) the NIST Factory Automation Systems Division (FASD) and Robot Systems
Division (RSD). The section presents generic recommendations for constructing any
reference architecture for control, discusses an approach for constructing a joint
architecture, and gives the outline for the contents of a specific proposed architecture.

It is planned that this feasibility report be followed by an effort to fully define a joint
architecture, an effort involving a larger group of people from RSD and FASD. The
architecture outlined here is intended as the starting point for that effort, but that group
will be not be bound by the outline given here. Appendix C contains many non-generic
recommendations addressed to that group.

Generic Recommendations

The authors have several recommendations to make which are independent of any
specific architecture. These generic recommendations are intended to apply to
developing a control system reference architecture in any domain.

Elements of Architectural Definition

All five elements of architectural definition (statement of scope and purpose, domain
analyses, architectural specification, methodology for architectural development, and
conformance criteria) should be given explicit consideration during the development of
an architecture. Architectural specifications (what it is) should be distinguished clearly
from methodologies for architectural development (how you build it).

It is the authors’ recommendation that all of these elements of architectural definition
be addressed in a balanced fashion. Failure to address all the elements of architectural
definition is a common oversight, which leads to an incomplete, inconsistent or
ambiguous architecture.

Tiers of Architectural Definition

An architecture should be divided explicitly into tiers of architectural definition and the
five elements of architectural definition should be clearly stated at each tier. Where a
range of options is intended by the developers of the architecture to be available to
implementors or refiners of the architecture, that should be handled explicitly at the
appropriate tier of architectural definition, not implicitly by being vague or silent.

Formal Languages

Formal languages should be used where appropriate. Where there is doubt about what
is appropriate, lean toward using a formal language; natural language can always be
used as an adjunct to a formal language. Formal languages are already universally used
at the lowest tier of architectural definition because computers do not deal well with
natural language.
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An obvious place to use formal language is in the expression of the models resulting
from domain analyses. Other places where formal language may be used are in the
architectural specification itself and in the conformance criteria.

Specific Recommendations

For the joint architecture, the authors have made a number of specific choices which are
high-level. These choices are outlined in the remainder of this section.

Scope and Purpose

The purpose of the joint architecture is to serve as a guideline for developing a control
system which is integrated with its environment and can perform real-time control of

system hardware where required. At each more specific tier of architectural definition,

the scope and purpose of the architecture is refined.

Tiers of Architectural Definition

The authors suggest that the architecture have four tiers of architectural definition. The
lowest tier consists of the implementations of the architecture, and will not be
discussed. The three upper tiers may be characterized as follows:

(1) adomain-independent, application-independent tier (tier one),
(2) adomain-specific, application-independent tier (tier two),
(3) adomain-specific, application-specific tier (tier three).

The structure of the tiers of definition of the architecture is shown graphically in Figure
11.

Note that while the first tier of architectural definition gives many of the guidelines
necessary to construct a control system, it is necessary to specify domain-specific and
application-specific items before constructing an implementation. In practice, many
architectures are specified only to this second tier of architectural definition, and the
implementor of the architecture must supply all the missing information as (s)he sees
fit.

In Section 8.3, we discuss tier one and tier two of the joint architecture, addressing each
of the elements of architectural definition at each tier. These tiers are not fully defined.
Additional items of architectural specification are desirable at both tiers but have been
omitted, not from lack of ideas, but because none of the alternatives for these items is
clearly best. Tier three is not addressed in this document, as defining this tier requires
the selection of meaningful applications within the domain. At this point in the
development of the architecture, it is not clear what these applications should be.
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Methodologies for Architectural Development

For the joint architecture, a methodology for architectural development for
transitioning from one tier of architectural definition to another will not be required as
part of conformance to tiers 1 and 2 of the architecture. However, when a methodology
is formulated, it may be included as advisory and required at tier 3 of the architecture.
Specific methods of specializing the architecture for a particular application (the
transition from tier 2 to tier 3 and from tier 3 to tier 4) are very likely to be useful and
may be required.

Outline of Proposed Architecture

The following sections give a discussion of the authors’ recommendations for the
construction of a joint RSD/FASD architecture at the first and second tiers of
architectural definition.

First Tier of Architectural Definition

This tier gives a domain-independent, application-independent architectural
specification. As required for each tier, scope and purpose, domain analyses,
architectural specification, methodology for architectural development, and
conformance criteria are all discussed.

Scope and Purpose

The domain definition at this tier is intentionally broad. It is assumed that there is a need
for a control system, and that the system being controlled must interact with its
environment and react to unpredicted changes in the environment. No further
characteristics are assumed.

The control architecture proposed here is intended to give guidelines for the
construction of a general control system in this very broad domain. This architecture is
specifically intended to be applicable to control systems for factories, robots,
autonomous vehicles, construction machines, and mining machines.

Domain Analysis

At this tier, it is important to create model(s) for the generation of plans, the
transformation of plans to tasks, and the assignment of tasks to resources. At this tier,
it is necessary to specify resources, plans and tasks generically, as explicit information
about the domain is not present. The authors recommend that an analysis be made of
the types of representations appropriate for each of the planning paradigms specified.

It is also recommended that the control function be analyzed to reveal the necessary
functions. There is considerable applicable work to draw on in this area.

Finally, it is recommended that hierarchical task decomposition be a mandated strategy
and that a methodology of task decomposition (which is advisory only) be adopted.
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8.3.1.3

8.3.1.3.1

8.3.1.3.2

8.3.1.3.3

Feasibility Study: Reference Architecture

Architectural Specification
The architectural specification at this tier should contain the following:
(1) definition of basic architectural units and functional characterization,
(2) rules for interactions of basic architectural units,
(3) rules for combinations of basic architectural units,
(4) rules for interaction of the control system with humans,
(5) rules for stored data and access,

(6) identification of and explicit models for relevant domain-independent,
application-independent information,

(7) selection of paradigms for communications mechanisms.
In the following sections, we address each of these topics in turn.

Atomic Units

The authors recommend that the basic architectural units of the joint architecture be
atomic units of the finest granularity possible and that the internals of architectural units
be invisible to the architecture. It is also recommended that atomic units have states, and
that these be capable of being externalized to aid in start-up, shutdown, reconfiguration,
and error recovery. Associated with each atomic unit is a set of functionality. In
addition to the atomic units, the architecture may include a number of architectural units
with the functionality of several atomic units combined together. Architectural units
with functionality that is a subset of the functionality of an atomic unit should not be
permitted.

Interactions among Architectural Units

The authors recommend that the interface description of each architectural unit specify
the information, functionality, and dynamics of the interactions of the unit with other
architectural units. The interface should provide for error recovery and safety
considerations. Given that this is a domain-independent architectural tier, and all the
relevant information may not be known, it is not immediately clear the extent to which
this can be done.

Combinations of Architectural Units

Attention must be paid to the way in which the architectural units, whether atomic or
not, can be combined. The architecture should define the interfaces and states of units
composed of more than one architectural unit, as well as interfaces and states of atomic
units.
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8.3.1.3.4

Feasibility Study: Reference Architecture

Note that, with the above definition of architectural units, it is no longer intuitively clear

what a ‘controller’ is. Certainly a controller should contain the task execution function,

