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Abstract: In this paper we are simultaneously concerned with methods for decompos-
ing grey scale microscope images and with methods for verifying the correctness
of these decompositions. One such method is resynthesis. Resynthesis is
viewed as a procedure whereby an analyzed scene can be reconstituted and sub-
jected to an analysis by human (informal) methods to determine the information
preservation of the process. Several algorithms are presented for different
ways of resynthesizing a decomposed image from its morphological decomposition
analysis.

I. INTRODUCTION

In attempting to do pattern recognition with computers on continuous tone image
sources of complex structure, one encounters the problem of decomposing the images
for scene analysis. When one's goal in such pattern recognition is more than to
assign the image to one of a number (usually small) of distinct classes, it be-
comes necessary to decompose the source image into subparts. These subparts
usually reflect the structural organization of the underlying object which,
through some transducer, produces the image for computer processing purposes.
This structural organization can reflect not only the intrinsic parts of the image
but also the relations between the image and others of some class of images
sharing similar structures. In this sense, the structural decomposition of an
image reflects the way in which some subculture that views such images organizes
them, usually for purposes not directly deducible from the images themselves.

In this paper we treat one aspect of the image decomposition problem, namely

that of attempting to verify the correctness of a decomposition of a computer-
scanned image by resynthesis of the natural image or by creating a surrogate

of the natural image from the decomposition data which characterizes its struc-
tural organizaiion. The image decomposition method that we use is described by
Kirsch (1971). It is a connected regions type of analysis which is thus related
to those of Brice and Fennema (1970),“ Jarvis (1971),3 Rosenfeld and Thurston
(1971),” and most closely to that of Krakauer (1971) .5

If we are to study a decomposition and verify its correctness, it is incumbent
upon us to elucidate the criteria with respect to which we perform such verifica-
tion. Several criteria which we wish to consider below have been implicitly sug-
gested in the literature. Naturally, different decomposition procedures will
appear to be differentially successful with respect to the distinct evaluation
criteria.

II. EVALUATION CRITERIA

The several evaluation criteria which we list below are mostly informal because
they require more or less subjective judgment. 1If these criteria appear appro-
priate, and if the decomposition-resynthesis experiments we report appear to be
reasonably evaluated with them, then a problem worth future study is the formal-
ization of these criteria. We do not attempt such a formalization here.
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1. Criterion of Pragmatic Usefulness in Eigher-~Level Recognition

This criterion measures the success of an image decomposition, especially in
such applications as scene analysis for complex objects (Guzman (1971)°) by deter-
mining the extent to which higher-level image processing routines (some of which
are based on extra-image properties) can find low-level primitives needed for
higher-level processing as outputs from the decomposition procedure. For example,
in a heuristic pattern manipulation system such as Winograd (1971)7 a measure of
the success of a scene analysis decomposition for images containing polyhedra
would be the extent to which edges and regions, which natural language processing
routines talk about, can be made available from the scene analysis programs.

2. Criterion of Succinetness for Characterizing Image Decomposition

If one's purpose in decomposing an image is encoding for such purposes as
storage or image transmission, then a valuable decomposition procedure is one
that reduces the information content of the image by redundancy elimination from
that necessary to characterize the raw scan to a more compact one. In image
analysis such a criteripn finds particular utility for such applications as long-
distance facsimile transmission, and for image storage in large data banks.

3. Criterion of Information Theoretic Invertibility

This criterion measures the success of a decomposition procedure by whether
the original information can be completely resurrected from the decomposition
data. The medial axis transform of Blum (for which see generalizations in Levi
and Montanari (1970)°) has this property. 1In a sense, therefore, no information
is lost during the decomposition and hence no pattern recognition is attempted,
although transforms of the decomposition data may be simpler than transforms of
the raw data in subsequent pattern recognition processes. This criterion is a
somewhat more stringent version of the second criterion since the emphasis is on
image storage and it forces a postponement of recognition to later phases of
image processing.

4, A Converse of the Third Criterion

A converse of the third criterion measures the degree of information reduction
in a decomposition procedure. The highest form of such decomposition is the one
which results in assigning a unique label to the pattern, as for example in
character recognition. This may thus be viewed as an information reduction from
n“ bits into logok bits where an n by n binary image is assigned to ome of k
classes.

5. Criterion of Completeness

The criterion of completeness is something of an elaboration on the third
criterion. From the standpoint of this criterion an image decomposition is
successful if it can result in the reproduction of the original image to within
some (usually informal) fidelity criterion, and if in addition it can assign to
the original image a structural description of the component parts. The decompo-
sition must attempt to explicate how the components are represented as members
of some larger class beyond the individual image being analyzed. There is a
direct analogy between this criterion of completeness and the type of criterion
used in natural language processing. There one wishes to do syntactic analysis
of strings of symbols in such a way that the resulting analysis not only assigns
to the original input string a unique code, but does this in a way that structural
descriptions are assigned to related different strings which mirror the
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relatedness of the symbol strings themselves. In order to do this it is, of
course, necessary to ease up on both the restriction of information theoretic
invertibility and that of information reduction because a structural description
will necessarily be more elaborate than the minimal code for representing the
information source.

6. Methodological Niceties

Methodological niceties provide a final criterion with which one can evaluate
an image decomposition algorithm. Some of these niceties may appear extreme
versions of the sine qua non criterion #1, but they are addressed to questions of
how one attempts to generalize from particular solutions to the image decomposi-
tion problem to general solutions over larger image classes. One such nicety has
to do with the clear separation of the morphological and syntactical aspects
of image decomposition. In morphological decomposition one attempts to explicate
the structure of the image based on properties which are measurable and intrinsic
to the image, whereas in syntactic analysis one relates the image to others from
the same class and thus explicates properties which are class properties rather
than individual ones.

Another methodological nicety has to do with the generality of the decomposi=-
tion over different classes of images. Needless to say, it is hopeless to attempt
syntacticanalysis over essentially distinet classes, but for the morphological
aspect of decomposition it appears reasonable to attempt to use decomposition
procedures which are neutral with respect to the intended interpretation of the
images.

A third very important methodological criterion has to do with the ease of
expansion of the decomposition algorithm to larger classes of images. If one
views the problem of image analysis as essentially an open-ended one in which
the class of images must necessarily increase in size with time, then a provision
must be made whereby new information about image structure can be fed to a system
without essentially disrupting the behavior of the analysis phase. Many complex
information sources seem to require essentially open-ended descriptions because
of the difficulty of anticipating a completely closed description of the informa-
tion sources at any one particular time. Except in the most stylized problems,
most natural image description has this property and thus has the need for
allowing unlimited expansion of the information source description in dealing
with open-ended classes of images.

In this paper we describe some experiments with an image decomposition procedure
which seems to score highest in terms of the sixth of the above criteria (the
methodological niceties), although if it should fail in terms of the first cri- |
terion (pragmatic) it would be of 1little value.

III. THE SYNTHESIS TEST

By a synthesis test for an image decomposition procedure we mean a test whereby
an image is resurrected or resynthesized from decomposition information and then
tested against the original image in terms of any one of a set of fidelity
criteria. To understand how a synthesis test may be used we might compare the
use of this test with the use of the third criterion mentioned above (information
theoretic invertibility). For decomposition procedures which have the inverti-
bility property the synthesis test is particularly simple to apply. One
recomputes the original 1image and then identifies it or measures the degree of
disparity between the resynthesized image and the original in terms of some common
measure {cross—~correlation, Hamming distance or others). In the case of inverti-
ble procedures the match between the resvnthesized and original images is usually
perfect. However, if there has been a loss of information during the
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decomposition procedure the inverse operation is not unique and the results of

the matching operation do not yield perfect agreement between the original image
and the resynthesized one. This is where the notion of a human fidelity
criterion is useful. By using a human judge ¢to determine the degree of disparity
between an original image and the one resynthesized from decomposition data, one
may measure whether a decomposition procedure which demonstrably loses information
nevertheless might preserve the information which is essential about some image.
In general it is not possible to determine a priori whether a resynthesized image
preserves the information that matters to some human observer, that property

being very sensitively related both to the information source and to the degree of
knowledge that the subject has about the information source.

A synthesis test for a decomposition procedure is particularly stringent in
another way. The ability to synthesize members of what purports to be an original
class of images can make very explicit the extent to which the resynthesized
class either falls short of or exceeds the intended class of images to be inter-
preted. In natural language processing the synthesis test is a powerful one for
demonstrating the extent to which a grammar exceeds or falls short of capturing
an intended class of sentences. A similar benefit may be obtained by using
synthesis methods for studying image decomposition procedures.

IV. RESYNTHESIS EXPERIMENTS

We wish now to consider some experiments in applying the notion of resynthesis
to biological images which have been scanned with a scanning microscope and then
decomposed by a particular decomposition algorithm. The images to be analyzed
are two scans obtained with a scanning microscope (described by Stein, Lipkin
and Shapiro (1969)9) of a human leukemic marrow blast cell in an autoradiograph
preparation showing both the image structure and the structure of silver grains
in a photographic emulsion overlying the image. The cell was first scanned with
white light illumination and then with monochromatic blue light at a wavelength
where the cell nucleus is substantially clear in the meparation used. For both
the white and blue scans the blood cell image is represented as am array of 256
by 256 optical brightness values, each value having eight bits of information.

Figure 1 is a representation of the cell scanned in white light. Sixteen
distinct printing characters are used to suggest the 256 optical brightness
values discriminated by the scammer. Figure 2 is a corresponding scan of the
same cell with the blue illumination.

The decomposition algorithm used is described by Kirsch (]_971).I We give here
a brief description of this algorithm. For the original image we first compute
some brightness contrast function which is a locally computable point function re-
lating to the gradient of the image brightness function. Larger values for this
contrast function correspond to higher values of the brightmess gradient. Next,
connected regions are identified which have a contrast value equal to or below
some low threshold. These are thus regions of maximum homogeneity of brightness.
In an iterative procedure the contrast threshold is raised, allowing the identifi-
cation of connected regions of successively less and less homogeneity. Each of
the connected regions previously identified is properly or improperly included
in the regions corresponding to higher threshold. When two disjoint regions
coalesce these two regions and their coalesence are noted in a tree structure
which is preserved during the successive iterations of the algorithm. The
process terminates when all regions have coalesced into one maximal size region
of minimal homogeneity, usually the whole image. The essential properties of
this algorithm are, first of all, that it identifies regions by thresholding in
the contrast transformation, and secondly, that the threshold used to identity
regions is based neither on a single uniform threshold criterion nor a local
one, but rather one which relates to the connectedness of regions under varying

thresholds.
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FIGURE 1.

SCAN OF HUMAN ADULT MARRCW BLAST CELL FROM ACUTE MYELOGENOUS LEUKEMIA WITH
WHITE LIGHT TLLIMINATION. IMAGE HAS 256 X 256 ELEMENTS WITH 16 PRINT
CHARACTERS USED TO APPROXIMATE THE 256 BRIGHTNESS RESOLUTIOM VALUES MEASURED.
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FIGURE 2,
PUT. LIGIT SCAM OF SAE CELL PICTIREN I FIGLRE 1.
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This (morphological) decomposition algorithm was applied to the image shown
in Figure 1. 1In this experiment the contrast function was partitioned into equal
intervals by choosing five equally spaced thresholds. 1In addition, because con-
trast functions are particularly sensitive to noise and local variations in an
image structure, all regions having an area of less than 16 picture elements were
rejected during the analysis phase. The consequent decomposition produced a
single tree structure having 260 nodes, the top node representing the single
region with 256 x 256 = 65536 points in it, and with the number of distinct
regions at each threshold level and the total area subtended by them summarized
in Table 1.

TABLE 1.
Summary of region decomposition for the cell shown in Figure 1. Only regions of
area 2 16 were accepted. The contrast function range was divided by five equally
spaced thresholds denoted level 0,...,level 4.

Contrast Threshold Number of Regions Total Area
Q 1 65536
1 16 37922
2 40 28888
3 76 17286
4 127 4732

Since it is not practical to exhibit the tree structure with all 260 nodes we
will attempt to characterize some of the properties of the morphological decompo-
sition tree of the image of Figure 1. Suppose that we take the decomposition tree
and extract just those nodes corresponding to the first level below the root of
the tree. As we see in Table 1 there are 16 different disjoint regions at that
level in the tree subtending a total area of 37922 picture elements. In Table 2
we present a summary of the analysis of each of the individual regions in contrast
threshold level 1 of the morphological decomposition tree.

TABLE 2.

Summary of Properties of the 16 Contrast Threshold 1 Regions
Arbitrary Area Upper Left Brightness Cut
Sequence Corner: (Arbitrary Units) Membership
Number Row Col White Blue S B

Scan Scan

1 61 88 139 83 92 X X
2 1647 1 167 198 145 .
3 442 1 215 75 117 X .
4 79 12 117 109 121 X X
5 202 161 251 92 110 .o
6 1369 223 178 95 108 .

7 1667 1 1 216 152 .o
8 254 9 127 130 134 ..
9 36 9 141 156 143 X X
10 31695 16 71 154 125 .
11 16 17 178 175 158 X X
12 346 86 246 207 145 X .
13 24 184 247 100 117 X X
14 21 225 216 128 115 X X
15 26 231 225 126 108 X X
16 37 245 245 186 119 X X
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In the first column of Table 2 is an arbitrary sequence number assigned to each
of the 16 regions. The second column gives the area of that region. We notice
that the regions are widely distributed in size, ranging from a smallest one hav~-
ing area 16 to a largest one having area 31695. The next two columns in Table 2
give for reference purposes the coordinates of the upper lefthand corner of each
region. The row numbers range from O to 255 from top to bottom and the column
numbers are similarly ranged from left to right. 1In the fifth column of Table 2
we show the brightness of the picture elements constituting the region averaged
over the whole region. Notice that insofar as this single number represents the
mean brightness over the whole region, all internal structural information is
lost. The scale of values for the fifth column ranges from that of a darkest
element with value 0 to a brightest one with value 255. The next column gives the
mean brightness of the corresponding region from the blue scan of Figure 2. As
we would expect the different relative brightness among distinct regions in the
white and blue scans relates to the different staining properties of the parts of
the underlying cell from which the image derives. The last column of Table 2
designates membership in two subsets or "cuts" (discussed below) for each of the
regions given in the table.

Another way to visualize this fragment of the morphological decomposition of
the original image is to do a resynthesis of the 16 regions preserving shape in-
formation but replacing all internal structure by mean brightness values. Figure
3 exhibits such a resynthesis. Several properties of the resynthesized image in
Figure 3 are noteworthy. First we note that the analysis of Figure 3 given in
Table 2 shows that there are only 16 disjoint regions. These regions have dif-
ferent mean brightness values, thus the region in the upper righthand corner
(sequence number 3, with area 442 at row 1, column 215) is the darkest of the
regions, whereas another region (sequence number 7) is the brightest region and
indeed corresponds to a part of the image background as can be seen from Figure 3.

Selection of Decompositions

We have suggested implicitly that within the complete morphological decomposi~
tion tree for an image like that of Figure 1 there appears sufficient information
to characterize the morphology of the image insofar as that morphology is evident
in intrinsic data, rather than external syntactic clues. To explore this matter
more systematically we wish now to investigate various synthesis procedures.

All of the procedures are based upon the morphological decomposition tree. We
have already seen in Figure 3 a resynthesized image containing 16 regions chosen
from the 260 regions in the whole decomposition tree. We also notice that in
Figure 3 most of the gross morphology relating to such things as figure-ground
separation and identification of large regions seems to have been made explicit.

In order further to investigate resynthesis procedures we introduce the notion
of a "cut" for a tree. By a cut we mean a subset of nodes satisfying the follow-
ing recursive definition:

a. The set consisting of the root of a tree is a cut.

b. If A is a cut of a tree and if B is obtained from A by replacing a member
of A by all its immediate descendants in the tree, then B is a cut.

c. All and only such sets of nodes are cuts.

We see thus that the set of 16 nodes from which Figure 3 was resynthesized
constitutes a cut of the tree. 1In a certain sense a cut constitutes a maximal
set of nodes for describing an image structure, there being many such maximal
sets. To see how other cuts might be generated, consider the distribution of the
terminal and non~terminal nodes of the decomposition tree as shown in Figure 4.
We see the nodes of the tree at each level partitioned into those which are
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FIGURE 3.

IMAGE RESYNTHESIS CORTAINIMG 16 REGIONS WITH EACH REGION EXHIBITED WITH UNIFORM
BRIGHTNESS,  THESE REGIOMS FORM THE CUT IMMEDIATELY BELOW THE ROOT OF THE
DECOMPOSITION TREE.
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LEVEL  TERMINAL ~ NON-TERMINAL

NODES NODES
0 0 1
1 8 8
2 31 9
3 66 10
4 17 0
TOTAL 232 23

FIGURE £,

DISTRIBUTION OF TERMIMAL AND NON-TERMINAL NODES IN THE DECOMPOSITION TREE
OF FIGURE 1.
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terminal and have no constituent structure of their own, and those which are non-
terminal and hence contain other subnodes corresponding to subregions. Another
cut of the tree suggested by Figure 4 consists of all the terminal nodes (a total
of 232). Figure 5 exhibits a resynthesis of the image counsisting only of these
232 terminal nodes, again with the mean brightness for the nodes replacing the
internal image structure in the resynthesized image. The resynthesized image of
Figure 5 quite evidently consists of the fine structure of the original image
just as the level 1 cut in Figure 3 exhibits the gross structure of the image.
The area of this terminal node cut is 10308 picture elements. Those members of
this cut which appear among the 16 in Table 2 are indicated by an "x" in column
seven under "B".

As we view the morphological decomposition procedure it serves to provide a
large set of alternatives to higher-level syntactical analysis routines, among
which alternatives a choice may be made with respect to which set (usually a cut)
is to be used for higher-level processing purposes.

An interesting example of how a higher-level procedure would invoke a mor-
phological analysis procedure is illustrated by the next example. Here we make
use of the additional information present in the scan of Figure 2 made in blue
light. Because of the histochemical nature of the biological preparation we know
that certain regions in the image should be dark in both the white light and in
the blue light scan, whereas other regions might be distinguished by the two dif-
ferent sources of illumination. In order to select those nodes which are maxi-
mally similar in the white and the blue light scan we can choose a cut for the
morphological tree in the following way. We start with the root of the tree and
then successively invoke step 2 in the definition above of a cut, or not invoke it
in such a way as to make the disparity between the average brightness of regions
in the white and blue scan minimal. Thus the selection of subnodes in the tree,
which is an option provided by the definition of a cut, is made according to what
is effectively an external criterion, namely similar brightness in two different
scans. By starting from the root of the tree and successively replacing nodes
with subnodes when the mean two-color disparity in brightness of the subnodes is
less than that of the parent node, we generate another cut from the tree. This
cut consists of a mixture of terminal and non-terminal nodes having a total of
100 nodes and an area of 20719 picture elements. We may then resynthesize the
image from mean brightness data using the cut thus generated and obtain a resyn-
thesized image as shown in Figure 6. Those of the 100 nodes appearing in Table 2

are indicated by an "x" in the last column under "S".

We have thus seen a few of the many alternative procedures for decomposing an
image using a morphological decomposition algorithm followed by a selection of a
cut set of nodes to partition the image into disjoint regions. The test of the
adequacy of such a partitioning with respect to some intended interpretation
with a human fidelity criterion is the test of resynthesizing the image preserving
the decomposition data and then inspecting the image for fidelity with respect to
the original.

Other Contrast Functions

The nature of the set of decompositions available from an image is of course
related to the choice of contrast function used for generating the morphologic
tree. A contrast function related to the gradient of the image brightness seems
natural for discriminating objects which are relatively uniform in their interior
and bounded by comparatively sharp boundaries. In biological images obtained
from the light microscope this largely constitutes the class of objects which are
bounded by membranes. There are, however, many types of objects which we have
elsewhere called constructive objects. They are characterized by variation in
brightness and appear to be either not sharply bounded or else merely textural
within their interior.
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FIGURE 5.

[MAGE RESYNTHESIS CONTAINING 232 REGIONS, THESE REGIONS FORM THE TERMINAL
NODE CUT OF THE DECOMPOSITION TREE,
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FIGURE 6.

IMAGE RESYNTHESIS CONTAINING 100 REGIONS OF MAXIMUM RELATIVE BLUE-WHITE
SIMILARITY. THESE REGIONS CONSTITUTE A CUT INTERMEDIATE BETWEEN THOSE
OF FIGURE 3 A\D FIGURE 5.
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In the scans of Figure 1 and 2 we have examples of such objects. These are
the silver particle tracks produced by radiocactive decomposition in a photographic
emulsion overlying the blood cells of the image. Since these silver grains are
substantially ultrastructural with respect to the light microscope and hence not
resolvable, they appear as regions of heterogeneous brightness usually with a low
mean value of brightness because they are opaque. This suggests that for such
objects a different type of contrast function might be appropriate, namely one
which is monotone-decreasing as a function of magnitude of the point value of the
gradient of the brightness function. Such a function which is monotone-decreasing
as opposed to the monotone-increasing function used in the above examples, was
used to study the image of Figure 1. The set of terminal nodes obtained from
such a decomposition (the analog of those used to produce Figure 5) was used to
resynthesize an image, again using mean brightness values, this time for the
different contrast function with the result shown in Figure 7. We notice that
Figure 7 consists of two classes of objects, those which are evidently boundaries
between real objects in the original image, and secondly those which are whole
regions of substantial heterogeneity of brightness such as the dark silver grains.

V. REMAINING PROBLEMS

As with any interesting problem the use of morphological decomposition methods
suggests more questions than it answers. We wish briefly to touch upon these
questions as suggestions for further work.

1. Use of Formalized Syntactic Models

We have given an example of the use of extramorphological information cor-
responding to scans with different illumination wavelength as a method for
selection of the proper set of regions from a morphological decomposition. How-
ever, there are many other ways in which extramorphological information can be
used. Such SXBtactic methods have been discussed previously in Lipkin, Watt, and
Kirsch (1966) where particular note is made of linguistic or descriptive models
and their relation to the morphological data in images. Other types of syntactic
information that can be used are taxonomic data relating to the taxonomy of a
particular class of images, or developmental information. Image organization can
be viewed as a reflection of image structure which in turn is a reflection of the
morphological development (in such images as cells) which has produced the image
structure as a consequence of underlying processes. A final example of the use
of syntactic methods is in the work of Harlow (1971)ll where a priori information
about the anatomical organization of, in his case, X-rays of the chest can be
used as a selection criterion for morphological discrimination.

2, Incremental Decomposition

The procedures for morphological decomposition described above are very ex-
pensive in terms of the computer time involved. In the example illustrated above
an entire decomposition tree is produced and then 260 separate regions must be
isolated and various features measured for each of those regions. On a large
general-purpose computer this can take on the order of an hour of computer time
for an image the size given in our example. If one has a particular set of
syntactically generated selection criteria for morphological selection, it
appears possible to avoid much of the computation necessary in morphological
decomposition by syntax-driven techniques. Thus in the example where a cut was
chosen based on color discrepancy information, the systematic nature of the
process descending from the root of the tree to subsequent levels could be
terminated whenever the syntactical decision criterion had been met. This would
avoid much computation and could conceivably make the process acceptably
efficient.



RESYNTHESIS OF [IMAGES 15

FIGURE 7.

IMAGE RESYNTHESIS OF TERMINAL NODE CUT FROM DECOMPOSITION USING MODIFIED
CONTRAST FUNCTION WHICH EMPHASIZES REGIONS OF HIGH BRIGHTNESS HETEROGEMNEITY.
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3. Selection of Decompositions by Feature Analysis Techniques

Since feature analysis and property filter methods (Rosenfeld (1969) in
chapter 7)l are so widespread in pattern recognition applications it appears
worthwhile to consider the set of regions in a morphological decomposition as
candidates for feature analysis and subsequent pattern recognition by these
relatively simple methods. These methods work well for pattern recognition on
isolated patterns with no multiple region problems. But decomposition methods
such as the one considered here provide just such isolated patterns. Thus, it
appears worthwhile to pursue the question of selection of nodes from a morpho-
logical decomposition by feature analysis testsand the simple types of property
filtration that can result. These methods may be intermixed with methods that
exploit the structural information in the morphology tree to yield fairly elab-
orate decomposition criteria which can then be subjected to the same type of syn-
thesis test that we used above.

4. Space-Filling Requirements

It is immediately obvious from the synthesized images exhibited above that the
regions constituting the resynthesized image are disjoint since they are sepa-
rated by white space in our figures. The resynthesized images are thus non-
committal with respect to their handling of the background for any particular
resynthesis. Several ways suggest themselves for handling background. One would
be based on growth and propagation techniques. One could propagate regions main-
taining their mean brightness values until intersection takes place btween dis-
joint regions. This would result in a space-filling type of resynthesis and in
images that might satisfy other types of more stringent synthesis tests.

VI. CONCLUSION

In our discussion we have employed an image decomposition method which we hope
can be of fairly broad use at least within the class of biological microscope
images and hopefully, in a still broader class of images. We have attempted to
evaluate the kind of decomposition produced by invoking the synthesis test of re-
synthesizing images from decomposition data. The real reason for using a syn-
thesis test, despite the many arguments we offer above in support of it, is that
it represents one of the best ways of trying to understand how it is that a pat-
tern recognition procedure works when it does. Since so much effort is neces-
sarily devoted to getting pattern recognition procedures for complex images merely
to exhibit satisfactory behavior, it may seem premature to be concerned with
issues of why such procedures work. It does seem, however, that ultimately one
must encounter such questions and answer them. The present paper is an attempt to
suggest how to obtain such answers.
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DISCUSSION

Rosenfeld:

I am a little unclear as to where the background comes from. Are the points
left white on your output simply the sum total of those areas that were too small
to get put into the tree?

Kirgch:

No, the area that is white in those images is accounted for in two ways:
first, the way that you mentioned, those regions which are too small to be
accepted in the filtering process; secondly, the regions which are above the
chosen threshold, which do not have to be thin lines because these are continuous
images. You see, since we are not dealing with line images the regions that form
boundaries in such images might themselves have substantial area. In the paper I
give the total area of these objects and you see how much is in fact accounted for
as boundary. This suggests immediately that some type of thinning algorithm might
be appropriately used to fill in pictures of this sort.

Rosenfeld:

I am still a little bit lost. When you have a criterion for the homogen-
eity ©of a region and you then take connected components with respect to that cri-
terion, T can see how very inhomogeneous regions break up into tiny components
and thereby get left out, but if by definition a region means a connected compon-
ent with respect to a homogeneity criterion, I don't see how there can be a region
which is homogeneous. Can you enlighten me a little further, or maybe we will
have to do it privately?

Kirseh:

Well, let me try to characterize the thing that's worrying you. You are
concerned, as I understand it, with regions which are heterogeneous, that is which
are not homogeneous, and you ask how it is that heterogeneous regions show up as
single coherent comnected objects. The reason is that the heterogeneity is a var-
ilable parameter and as one raises the value of this parameter, raises the thres-
hold, regions that are heterogeneous now are, with respect to that threshold, no
longer sufficiently heterogeneous to break up into separate parts, hence they
become single connected objects. As you move in this type of tree diagram you are
making more and more heterogeneous regions into single cornnected regions until
finally the very top node represents one region, the whole image, which has a
heterogeneity which i1s less than or equal to the maximum heterogeneity in the
whole image.

Rosenfeld:

Your Tablel shows the nunber of regions as a function of the contrast thres-
hold; I want to mention a curious fourth power law discovered by Mott-Smith et al,
namely: 1f you lock at connected components of constant grey level, the rnumber
of such components is inversely proportional to the fourth power of the area, It
would be of some interest empirically to ask what sort of power law is revealed
by the sorts of components that you are obtaining.

Kirsch:

That's a very interesting point. Intuitively I would say that our experi-
ments confirm that, although we 'haven't in fact done any formal experiment of that
sort.,

MeCormick:

There is a great deal of similarity between what you are doing and the clas-
sical paper of Rogers on Numerical Taxonomy. As far as I can see, you first form
homogeneous regions by introducing a contrast function and then map these regions
into an association graph. Then you break up the graph by setting a threshold
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criterion on the strength of the ccefficients of association between neighbouring
regions. This strategy, as far as I can determine, decomposes the assoclation
graph into a tree structure by a mechanism identical to the one used by Rogers.

But Rogers goes on and does something which I didn't hear discussed here
and on which I would like your comments. Many of the nodes in this process may
be, in some sense, superfluous. That is, one can have neighbouring points of
nodal break-off for small perturbations of the coefficient of association. It's
like making a phylogenic tree: one wants to get more significant nodes, nodes
which are stable so that a little change in the threshold will not suddenly make
a new configuration. For that reason Rogers introduced the concept of moat, i.e.
how much you have to be able to move the contrast function to get a new node, and
intreduced other selectlon processes to select out the more stable nodes - i.e.,
in your work, the preferred regions. Do you have a similar clustering strategy
in your work, or not?

Kirsch:

No, I don't. I view the decomposition tree as a set of morphological cholces
provided to a later syntactical process which selects the particular decomposition
for an image. In the tree dlagram I'm using there are many different ways of
characterizing the whole image by choosing different sets of nodes across the
tree, the so-called cuts. Now, which one is better? I don't know. I'm suggest-
ing that the choice of nodes should be done by essentially a syntactical process,
a process that uses other information than what is intrinsic in the image itself.
This I offer as a suggestion for how to continue the program that Narasimhan and
I, and others, have been interested in for so long: attempting to impose linguis-
tic constraints which are, of course, not in the image but in the culture for
looking at the image.



