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Abstract 

Manufacturing enterprise decisions can be classified into four groups: business decisions, design decisions, 

engineering decisions, and production decisions.  Numerous physical and software simulation techniques have been 

used to evaluate specific decisions by predicting their impact on either system performance or product performance.    

In this paper, we focus on the impact of production decisions, evaluated using discrete-event-simulation models, on 

enterprise-level performance measures.  We argue that these discrete-event models alone are not enough to capture 

this impact. To address this problem, we propose integrating discrete-event simulation models with system 

dynamics models in a hybrid approach to the simulation of the entire enterprise.  This hybrid approach is 

conceptually consistent with current business trend toward integrated systems.  We show the potential for using this 

approach through an example of a semiconductor enterprise.  
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1. Introduction 

In manufacturing enterprises, numerous strategic, tactical, and operational decisions are made everyday. These 

decisions, which have a huge impact on profitability and survivability, address four major branches of the enterprise: 

business, design, engineering, and production.   Much research has been devoted to optimizing the performance of 

each of these branches.  A large number of optimization techniques from the fields of operations research, artificial 

intelligence, and simulation, have been proposed in the literature. These techniques evaluate specific alternatives by 

predicting their impact as quantified in one or more performance measures. 

 

Operations research (OR) techniques are highly mathematical in nature and usually attempt to find the optimal 

decision based on the given performance measures and some set of constraints. Some examples include 

mathematical programming, forecasting, inventory control, graph theory, and queuing theory. These techniques are 

based on sound mathematical theories, but they often require simplifying assumptions that limit their applicability to 

real-world problems.  

 

Artificial intelligence (AI) techniques such as knowledge-based heuristics, neural networks, and genetic algorithms, 

have been widely used in conjunction with or instead of OR techniques.  They are attractive for three main reasons. 

First, they allow qualitative as well as quantitative evaluation. Second, they can model complex relationships among 

factors that influence that evaluation. Third, they can generate complex heuristics that incorporate those 

relationships. They have, however, two serious disadvantages:  they can be difficult to build, verify, and maintain; 

and, they generate only feasible, and sometimes poor solutions.  

 

Over the last two decades, simulation has been used widely – sometimes alone and sometimes with OR and AI 

techniques - to evaluate alternatives and to optimize performance in all branches of the enterprise.  Many types of 

simulation techniques are used including physical, process, discrete-event, and system-dynamics.  Consider the 

following examples.  Physical simulations are used in the design branch to evaluate alternative product designs. 

Process simulations are used in the engineering branch to evaluate the likelihood that a particular machine can 

fabricate a part to the desired tolerances.  Discrete-event simulation (DES) is used in the production branch to 



evaluate planning, routing, and scheduling alternatives.  And, system-dynamics simulations (SDS) are used in the 

business branch to evaluate the impact of business alternatives on the long-term profitability of the enterprise. 

 

As just described, there has been considerable research related to the performance of individual branches of the 

enterprise; little research, however, has been reported on their interactions.  In this paper, we focus on the 

interactions between the production branch and the business branch.  Specifically, we consider how scheduling 

decisions, made using a discrete-event simulation (DES), in the production branch impact reinvestment decisions, 

made using a system-dynamics simulation (SDS), in the business branch.  To do this, we will integrate the DES and 

the SDS into a distributed, enterprise simulation.   

   

2. Background 

In this section, we provide some background on the use of discrete-event simulation, system dynamics simulations, 

and distributed simulations in manufacturing. 

 

2.1 Discrete event simulation in production decisions 

In most manufacturing simulations, time is a major independent variable. Other variables are state variables that 

describe what is happening in the process or system as a function of time.  In the DES approaches, state variables 

change only at discrete points in time, called event times.  Examples of state variables include the number of jobs 

waiting in the queue in front of a machine, the status of each machine on the shop floor, and the location of each job 

in the factory.  DES models are mainly flow models that track the flow of entities through the factory.  The task of 

the modeler is to determine the state variables that capture the desired behaviour, events that change the values of 

those variables, and the logic associated with each event. Executing the logic associated with each event in a time-

ordered sequence produces a simulation of the system. As each event occurs, it is removed from the sequence and 

the next event is activated. This continues until all the events have been processed. Statistics are gathered throughout 

the simulation and reported with performance measures (average delays, down time, and throughputs to name a 

few). Different probability distributions can be associated with each process to simulate natural variations.  

 



In the production branch, DES has been applied to scheduling, and planning (Law 1991, O’Reilly 1999). The 

simulation models generally represent the flow of materials to and from processing machines and the operations, 

usually modeled as a time delay, at those machines. Planning decisions include capacity planning, production 

planning, and process planning.    Capacity planning simulations evaluate the impact of changing product mix or 

demand. Production planning simulations evaluate the impact of various aggregation schemes and their associated 

material-order policies. The planner can use a DES model to test material reorder points and delivery procedures to 

manage inventory buffer. Process planning simulations evaluate assignments of jobs to machines and routings for 

those jobs through the shop. Scheduling simulations seeks solutions to daily issues including on-time order 

completion, priority changes, and unexpected changes in resource availability.  DES helps a system engineer detect 

potential scheduling problems through the review of the resource and schedule performance during the scheduling 

interval (shift, day, or week). The new alternative policies are then executed and performances of the system for the 

different policies are compared. This process is repeated until a feasible and desired schedule is achieved (Jeong 

1998, Kim 1998, Lin 2001, Min 2002, Vaidyanthan 1998).   

 

From the preceding, brief discussion, we can see that DES is a widely used and increasingly popular method for 

studying the design and operations of manufacturing systems. In fact, DES is often the only type of investigation 

possible. There are three main reasons. First, DES has the ability to describe the most complex manufacturing 

systems and to include stochastic elements, which cannot be described easily by mathematical or analytical models. 

Second, DES allows one to track the status of individual entities and resources in the facility and estimate numerous 

performance measures associated with those entities under a wide range of projected operating conditions. Third, 

alternative facility designs or operation policies can be compared via DES to see which best meets a specified 

performance goal.  

 

However, DES does have two major drawbacks.  First, one can only establish estimations of and correlations among 

variables and performance measures using statistical models. The underlying reasons for or causes of these 

estimations and correlations cannot be deduced from the models themselves; they must be inferred.  Although 

critical to effective decision-making, understanding the difference between correlation and causality is not always 

easy.  Consequently, erroneous causal inferences can be drawn based on the estimated correlations.  Second, DES 



models allow us to evaluate the system performance for specific values of decision variables or control policies. 

They do not allow us to determine the stability of the system in any region or neighborhood of those values or 

policies.  This is of critical importance in complex systems where system performance may be driven by hidden, 

causal relationships that may be highly non-linear. In such systems, small deviations from the optimal decision point 

can cause disproportionately large changes in the system performance.  To better understand these causal 

relationships and their possible non-linear effects, we turn to system dynamics simulations. 

 

2.2 System dynamics simulation  

System dynamics is a method for studying the evolution of many real-world systems. It has its origins in the control-

engineering work of Jay Forrester (Forrester 1971, 2001). Peter Senge (Senge 1994) views system dynamics as a 

conceptual approach to facilitate the understanding of complex problems. Its central concept is that all the objects in 

a system interact through causal relationships.  These relationships come about through feedback loops, where a 

change in one variable affects other variables over time; these variables, in turn, affect the original variable, and so 

on.  System dynamics asserts that these relationships form a complex underlying structure for any system. This 

structure may be empirically or theoretically discovered.  It is through this discovery that the causal relationships 

become clear and predictions of the future behaviour of the system becomes possible. 

 

The creation of a complete dynamic model of a system requires the identification of the causal relationships that 

form the system’s feedback loops (Forrester 1971 and 2001, Sterman 2000). Feedback loops can be either negative 

or positive. A negative feedback loop is a series of causal relationships that tend to move behaviour towards a goal. 

In contrast, a positive feedback loop is self-reinforcing. It amplifies disturbances in the system to create high 

variations in behaviour. Causal loop diagrams are important tools for representing the feedback structure of the 

systems. A causal loop diagram consists of variables connected by arrows denoting the causal influence among the 

variables. The important feedback loops are also identified and displayed in the diagram (figure 1).  

 

[Insert figure 1 here] 

 



From these causal loops, we can develop a stock and flow graphical structure (figure 2). Stocks are accumulations of 

information or materials that characterize the state of the system. They generate the information upon which 

decisions and actions are based.  They also create delays by accumulating the differences between the inflow and 

outflow of a process. Flows are rates that are added to or subtracted from a stock. This graphical description of the 

system can be mapped into a mathematical description of the system.   

 

System Dynamics has been used extensively in the business branch. Its uses range from the analysis of various 

strategic and operational policies to the actual design of supply chains and their logistics. Jay Forrester (1958), who 

pioneered the modeling of supply chains using system dynamics, described them using flows of information, orders, 

materials, money, human resources, and capital equipment. In a recent paper, (Angerhofer and Angelides 2000), the 

authors argue the use of system dynamics modeling in supply chain management has only recently re-emerged after 

a lengthy slack period. They further argue that there are three main uses: theory building, problem solving, and 

improved modeling.  

[Insert figure 2 here] 

 

According to (Ackerman et al., 1999), research in theory building includes the uses of system dynamics to study the 

interrelationships among the different elements of a supply chain system.  Towill uses systems dynamics as a 

methodology to solve difficult problems such inventory oscillations, supply chain re-engineering, and supply chain 

design (Towill, 1996). In (Naim and Towill, 1994), the authors use system dynamics as a simulation tool to model 

the dynamics of the supply chain.  

 

2.3 Distributed simulation in manufacturing 

The idea of using a distributed simulation to model manufacturing enterprises has recently gained favor.   Typically, 

there is a single conceptual manufacturing simulation comprised of multiple individual simulations of enterprise 

systems.  These individual simulations execute independently but interact with each other.  There are two ways to 

ensure that this interaction goes smoothly and events are synchronized properly.  The first uses the High Level 

Architecture (HLA), which was developed to provide a consistent approach and rules for integrating distributed, 

heterogeneous, defense simulations (Kuhl 1999).  The first demonstration of the HLA-based manufacturing 



simulation was conducted as part of the MISSION project (Mission 1998).  This international project demonstrated a 

distributed, heterogeneous, supply-chain simulation that integrated existing factory-level simulations (Riddick 

2000).  In (Venkateswaran 2002), the authors constructed another supply-chain simulation based on the HLA, the 

Distributed Manufacturing Simulation (DMS) Adaptor, and the scenario presented in (Umeda 1998).  

 

The second is to use the time-stamping approach developed to synchronize events executed concurrently on 

different computing processes (Chandy 1979, Jefferson 1982).  Fujii (Fujii 2000) adapted this approach for his 

factory simulation, which integrated distributed and precise cell-level simulations. Ramakrishnan (Ramakrishnan 

2002) developed a master-event calendar mechanism for his supply-chain simulation. And, Misra (Misra 2003) 

presented a neural-network-based, adaptive-time-synchronization mechanism for the integration of supply chain 

simulations, where the best mechanism is identified dynamically based on federation conditions. 

 

3. Hybrid SD-DES simulation approach 

We believe that our proposed SD-DES approach to manufacturing enterprise simulation offers a simulation 

approach that is consistent with the increasing levels of integration in manufacturing enterprises. As manufacturing 

systems become more integrated and the entire enterprise becomes the subject of the simulation and the analysis 

process, DES capabilities will face serious challenges. First to mention is that the complexity of the DES models 

increases exponentially with the size of the simulated systems. Moreover DES limits the scope of simulation to a 

detailed analysis technique that is not recommended for the decisions in the aggregate and strategic levels (See 

Cranfield University Web site: http://www.cranfield.ac.uk/sims/mem/mdms/aitoroyarbide/researchaitoroyarbide.htm].  

 

On the other hand SD focuses on the system structure and the feedback interrelationships among its components 

rather than detailed data requirements. A major advantage of the SD methodology is the ability to trace causal 

relationships among system components so as to follow any problematic behaviour to its real roots on any part of the 

system. Besides SD models are relatively easy to develop and the complexity of the models seems to be increasing 

linearly as compared to the DES models (Sterman 2000). 

 

http://www.cranfield.ac.uk/sims/mem/mdms/aitoroyarbide/researchaitoroyarbide.htm


DES, however, seems to give more credible models and this is due to the level of details that can be included in the 

models. But when it comes to the strategic and aggregate levels then SD has some distinct advantages over DES 

(Baines 1999, Also see Cranfeild University web site) 

 

A review of related literature has shown that integrated systems are more demanding and DES seems not to satisfy 

the analysts’ needs. Some researchers have recommended the use of the continuous simulation methods rather than 

DES. Others have recommended the use of hybrid continuous-discrete simulation approaches. In both cases the use 

of DES alone has been subject to criticism (Barton 2001, Lee 2002, Gregoriades 2003).  

 

Many variables in product and information flows in supply chains (SC) and enterprise systems can have continuous 

factors that might not be modeled properly using DES. Several problems would arise because of that. Inability to 

reflect the continuous nature of the process or the interaction among the continuous components, in addition to the 

growing complexity for the more detailed models and the too-much simplification needed for small-scaled models, 

are some of these problems [Lee et. al 2002]. To exemplify that Lee (2002) built a simple model of a SC using DES 

and then using DES with some continuous enhancements. The DES only model overestimated some of the state 

variables (inventory levels). That is unnecessary inventory would become necessary according the DES analysis 

results. 

 

Some researchers preferred limiting the use of DES to certain problems areas in the SC, that could be in the tactical 

and operational levels in specific, or where few alternatives are available and detailed analysis is required (Chang 

2001, Lee 2002).  Huang et al (2003) investigated if a single model could be used to model all of the three levels of 

decision-making, and they did not believe it could. Barton (2001) in the other hand said that overall models with 

sufficient details are rare. But it is indicated that complete SC models based on SD, which is a continuous simulation 

approach, is not unusual. What can be concluded is that using DES for modelling the entire enterprise or SC is not 

recommended. Also the level of decision-making in an enterprise (strategic, tactical and operational) is a factor in 

determining which simulation approach to use. There is, in addition, a tendency toward recommending the use of 

SD. SD offers the following, among others (Mandal 1998, Bainess 1999, Gregoriades 2003,): 

 



• SD integrates the many subsystems to give a holistic view of the entire manufacturing systems. 

• It moves from focusing on individual decisions to focus on policy structure. Policies and strategic issues are 

the central focus in SD models.  

• Feed back loops are the basic building blocks and policy decisions are embodied in the feed back loops. 

• SD models allow the construction of the causal relationships among variables. A model is a dynamic 

picture of perceived cause-effect relationships among the real system elements. 

 

Furthermore, SD models can address the qualitative issues in manufacturing systems, and, as a continuous 

simulation methodology, models are more intuitive than the discrete models (Gregoriades 2003, GroBler 2003, 

Levin 2003).  

 

However, it is noticed that SD is not widely used in manufacturing although recommended as an alternative to DES 

or in hybrid systems. The use of SD for manufacturing systems applications has gone into a lengthy slack period 

since the pioneering work of Jay Forrester in the 60s and 70s, until about a decade ago. In fact manufacturing 

systems modeling was considered a missed opportunity for SD modeling, especially in the higher levels of decision-

making (Baines 1999, Angerhofer 2000, Mandal 2003). 

 

In a survey of the applications of SD, Baines (Baines 1999) and his coworker have found that whenever SD is used 

in manufacturing it is mainly used in the operational level, while there is a lack of the exploitation of SD at the 

higher levels. This could be unexpected since SD is supposed to be an overall system thinking approach. One could 

argue that analysts of manufacturing systems tried to use SD in the same way they used DES, or in the same areas of 

applications they used to work in. This can be called the DES mentality in conducting simulation. With SD this 

mentality is not expected to result in the desirable outcomes and this could be the reason why SD potentials are not 

sufficiently exploited in manufacturing systems as they are in ecological systems for example.  

 

Gary et al. (Gary 2003) found that current SD environments do not provide the granularity needed to model the 

complex stochastic material flows for a semiconductor supply network in the operational level. And they preferred 

DES. The researchers at Cranfield University were working to develop manufacturing simulation tools based on SD, 



in order to replace DES but they are not getting promising results yet. All the above would provoke the use of SD 

and DES in a hybrid approach to model the manufacturing systems. 

 

Hybrid systems are those where discrete and continuous factors coexist (Lee 2002, GroBler 2003, Huang 2003, 

Levin 2003). Levin et al. (2003) believe that hybrid models are reasonable approximation to continuous models and 

are easier to comprehend. They suggest using SD with DES in hybrid systems. They, however, believe that the 

stocks and flows (the basic tools of SD) are not intuitive enough and also the use of the causal loops to simplify the 

process was found problematic. In the Cranfield University research work, SD is not considered appropriate as it is 

for modeling manufacturing systems; and hence SD-based tools need to be developed for manufacturing systems 

modeling and in order to replace DES.  

 

Based on that it can be concluded that DES models do not seem to be the best choice for modeling the entire 

manufacturing enterprises and SC, especially when considering the integrated systems nowadays. Hybrid discrete-

continuous modeling systems are more reasonable and practical approaches. Hybrid models are also better in handle 

the differences in the requirements in modeling the three levels of the decision making process. In addition, SD is a 

recommended continuous modeling approach that is already being used more often than DES in modeling SC.  

 

Consequently we believe that hybrid SD-DES models would provide a good, effective and satisfactory approach to 

model the entire manufacturing enterprise. Such hybrid models could be simple, yet effective and comprehensive, 

and able to model the stochastic, continuous and the qualitative aspects at all the levels of decision-making process.  

Some researchers believe (See for example Baines 1999 and Cranfeild University site) that SD can replace DES in 

simulating manufacturing systems. But the success of DES is not deniable and a replacement would need years to 

prove itself. It should be better to make use of the two approaches combined. 

 

Aggregate and strategic decisions, which are made at the higher management level and aimed at maximizing firm’s 

performance in a certain business areas of the firm, may result in unanticipated undesirable side effects on other 

areas of the firm. The scope of the simulation models should not be limited to certain areas within manufacturing 

systems but should include other internal key business functions, strategically, operationally, and tactically, as well 



as include necessary external elements like suppliers and customers. Hybrid SD-DES is expected to be able to 

provide for that. 

 

4. Conceptual description of the SD-DES model 

The proposed approach aims at building simulation models of the manufacturing enterprises. Basically a model is a 

SD model for the entire enterprise. Then for selected parts of the enterprise, especially the operational and some 

tactical level parts; DES models will be built to interact with the overall SD model. Where should DES models be 

needed is subjective, depending on the projected use of the model and the required levels of details. The most 

effective, feasible combination of models is desirable such that the advantages of both simulation methodologies are 

maintained, not compromised.  

 

The next section presents a preliminary example to explain the essence of this approach. For the purpose of this 

paper the enterprise model is developed as a distributed simulation model. SD model and DES models will be built 

and run separately. Data from each model will be the input to the other models, in a feedback cycle. In the future the 

models will be communicating automatically with each other in a single running complete enterprise model. 

Communication issues are the subjects of a current research work. 

 

5. An illustrative example 

Our preliminary study investigated the potential of combining the DES and SD in modeling a manufacturing 

enterprise.  This enterprise has two plants: a semiconductor fabrication plant (fab) and the sealer plant. The company 

is profitable, but the fab plant is contributing more to the company’s total earnings. Strategic decisions of resource 

allocation are made at the top management levels. We are interested in the allocation of the financial resources to the 

plants. Capital can be allocated to plants according to one of three rules:  proportional to net income, proportional to 

revenues, or proportional to profit margins. These decisions and all relevant information at the strategic level of the 

firm are modeled by the SD approach.  

 

The operations at the plants are modeled using DES. Reinvestment decisions at the plant level, such as increasing 

capacity by acquiring new machine, hiring new people or improving existing facilities, will be validated and 



evaluated in the DES models. Feedback in terms of productivity and cost information and other measures will be 

given to the SD model. SD will react as appropriate to adjust the investment decision considering the feedback 

information and the allocation rules. The cycle continues until the best allocation of resources is obtained. Studying 

the interaction between the strategic planning and the shop floor activity is the core of this work.  

 

5.1 The SD model 

The principal objective is to study the dynamics of creating corporate growth with a positive economic value-added 

(EVA) in perpetuity. So far, no company has overcome the forces limiting corporate growth and making it 

vulnerable to ultimate merger, acquisition or failure. The model incorporates the corporate strategic level that 

decides the percentage of re-investment from the total profits and what portion of that re-investment will be 

allocated to each plant. In addition, the model captures the impacts of the decisions of the plant managers on how to 

invest the financial resources provided by corporate. The plant managers can buy more machines, 

increment/decrease the workforce, start R&D Projects (to increase sales and sustain the current product), and 

implement enhancement productivity projects (e.g., six-sigma). The model also models the supply chain of each 

plant, the decisions about the price of the different products and compiles the costs and revenues from each plant in 

order to generate the earnings before interest and taxes.  

 

Causal loops were developed and transformed in differential equations. Figure 3 shows one of the causal loops 

developed. The two inner loops are both positive, while the outer loop is negative. Currently, the model has 10 

differential equations and more than 50 auxiliary variables. Figure 4 shows a part of the stock-and-flow model 

related to the fab plant, and the decisions from the plant managers, and the results of the DES analysis of those 

decisions.  

[Insert figure 3 here] 

 

The corporate strategy in this firm is to re-invest 55% of the its earnings before interest and taxes (EBIT).   The 

other 45% corresponds to taxes, interests, and dividends. The allocation of this re-investment can follow one of three 

different policies: 



1. Proportional to Average Return. The reinvestment amount allocated to a plant will be based on the 

proportional size of its average return. 

2. Proportional to Revenues. The re-investment amount allocated to a plant will be based on the proportional 

size of its revenues (with respect to the total revenues of the corporation). 

3. Proportional to Earnings. The re-investment amount allocated to a plant will be based on the proportional 

size of its EBIT (with respect to the total EBIT of the corporation). 

  

[Insert figure 4 here] 

 

5.2 The DES model of the fab 

The considered fab, which contains 24 workstations, is based on the work of (Wein 1988).  With the exception of 

workstations 13 and 14, which have two and three identical machines respectively, each workstation has a single 

machine. The fab uses a single processing technology that requires 172 total operations at the 24 workstations. In 

this study we assumed only one type of wafer, so the processing sequence is the same for all orders.  

 

[Insert figure 5 here] 

 

Wafers are released into the fab in lots of 24 wafers, according to an exponential distribution with 42 hrs mean 

interarrival time. Lots are processed at each workstation according to First In First Served (FIFS) discipline. 

Processing times are based on Gamma distribution (shape parameter of two). Processing times are assumed to 

include setup times and transfer times between stations, and rework if needed. No limits on WIP capacity are 

assumed between workstations. However, machines are subject to failure and this is modeled by a Gamma 

distribution (shape parameter of 0.5). Values for mean processing times per lot at each machine, mean time between 

failure, and mean time to repair are taken from (Wein 1988). 

 

The fab DES model is used to evaluate the impact of changes in demand and various decisions regarding the 

expenditures of additional financial resources. The DES outputs production rates, capacity projections, WIP 

information, and configuration data such as number of machines and workers.  At the current capacity configuration 



and demand levels, the fab can complete 89.5% of released orders during the year, which corresponds to a 

production rate of 0.00056 lots/hr. However, machine utilization varies from 70% to 30%.  

 

Market analysis has shown that the firm should expect and be ready for a considerable increase in demand, 

somewhere between 10% and 25%.  The DES model shows that a 10% increase in demand would lead to a 7.8% 

reduction in completed orders, a 17.86% reduction in the production rate, and an increase in WIP of 33.33%.  So, 

the plant cannot meet even the smallest projected increase in demand.  Its only action is to expand capacity by 

getting more machines and more people. 

 

Once the SD simulation decides how much of additional financial resources to provide the fab, the fab manager will 

decide how to allocate those resources to new machine and new people. The DES then computes the throughput and 

cost data, which are fed back to the SD where long-term earnings are estimated.  

 

5.3 Results and implications 

The integration of system dynamics and discrete-event simulation allowed us to simulate different hierarchical 

levels of the modern enterprise. The system developed was simulated with three different investment policies at the 

corporate level. The plant managers were able to balance between increased capacity, sustaining product 

improvement, and productivity projects. Figures 6, 7, and 8 have the results for three different investment policies. 

As can be seen on the charts, the allocation policy that is best for the corporate level is not so for both plants; only 

for one of them. Real time feedback information from the tactical and operational levels are needed and this is what 

our proposed hybrid model of the entire enterprise offers. 

 

[Insert figure 6 here] 

[Insert figure 7 here] 

[Insert figure 8 here] 

 



6. Conclusions and future work 

This paper has been a preliminary analysis of the potentials of integrating system dynamics (SD) simulation models 

with discrete-event (DES) simulation models in an integrated hybrid approach to simulate manufacturing systems. 

We have shown the potential merit of such an approach in evaluating the impact of local production decisions on the 

entire enterprise. The SD simulations capture long-term effects of these decisions. They, SD and DES, also provide 

a more detailed analysis of the future stability of the enterprise.  

 

The integration of SD and DES can provide a good framework for Enterprise Simulation. This framework can 

enable simulations at multiple resolutions in space and time. This will enhance the current modeling of the modern 

enterprise which is dominated by managerial hierarchies in which high corporate managers set objectives to their 

plant managers who, in turn, try to satisfy them by setting objectives and tasks to their personnel. Unfortunately, so 

far, the current enterprise simulation frameworks cannot mirror the hierarchical aspects of the enterprise and provide 

good answers to the decomposition of tasks and alignment of objectives at different levels. 

 

Projected future work includes comprehensive studies to propose a set of criteria to define the attributes of 

manufacturing enterprise systems by which the modeler can decide on where DES model should fit in an overall SD 

model of the enterprise. The illustrative example in this paper has been in a distributed simulation-like model. The 

next step (which is currently under study) is to develop a methodology to communicate the DES models with the SD 

so that models run and interchange feedback information automatically in a single integrated simulation model. 

  

References 

Angerhofer, B., and Angelides, M., 2000, System dynamics modelling in supply chain management: research 

review.  Proceedings of the 2000 Winter Simulation Conference, Joines, Barton, Kang, and Fishwick (editors). 

Baines, T. S & Harrison, D. K., 1999, An opportunity for system dynamics in manufacturing system modeling. 

Production Planning and Control, 10 (6), 542-552 

Barton, J. A., Love, D. M., Taylor, G. D., 2001, Evaluating design implementation strategies using simulation., I. J 

of Production Economics, 72, 285-299 



Cardarelli, G. and Pelagage, P. J., 1995, Simulation tool for design and management optimization of automated 

material handling and storage systems for large wafer fab, IEEE Transactions On Semiconductor Manufacturing, 

8(1), 44 - 49. 

Chandy, K. M., and J., Misra, 1979, Distributed simulation: a case study in design and verification of distributed 

programs, IEEE Transactions on Software Engineering, 5(5), pp. 440-452. 

Chang, Yoon & Makatsoris, Harris, 2001, Supply chain modelling using simulation, I. J. of Simulation, 2 (1), 24-

30. 

Cuburt, R. and Fishwick, P. (1997), Moose: An object-oriented multimodeling and simulation application 

framework, Simulation. 

Delen, D., Benjamin, P., and Erraguntla, M. (1998), Integrated modeling and analysis generator environment 

(IMAGE): a decision support tool, Proceedings of the 1998 Winter Simulation Conference, pp.1401-1408. 

Deshmukh, A. V., Talavage, J. J., and Barash, M. M., 1998, Complexity in manufacturing systems: part 1: analysis 

of static complexity, IIE Transactions, vol 30, number 7, pp. 645-655. 

Ditto, W. L., Rauseo, S. N. and Spano, M. L. 1990. Experimental control of chaos, Physical Review Letters 65 (26): 

3211-3214. 

Ferscha, A., and Richter, M., 1997, Java based conservative distributed simulation.  Proceedings of the 1997 Winter 

Simulation Conference, pp.381-388. 

Fishwick, P. (1996), Web-based simulation: some personal observations, Proceedings of the 1996 Winter Simulation 

Conference, pp.772-779. 

Forrester, J., 1958 Industrial dynamics, Productivity Press,  Portland, OR, USA. 

Forrester, J., 1971, Principles of systems. Pegasus Communications, Inc., Williston, VT, USA  

Fox, Mark S. & Gurninger, Michael, 1998, Enterprise modeling., AI Magazine, 19 (3), 109-121 

Fujii, S., Kaihara, T., and Morita, H., 2000, A distributed virtual factory in agile manufacturing environment, 

International Journal of Production Research, 38(17), pp. 4113-4128. 

Gary W. Godding, Hessam S. Sarjoughian, & Karl G. Kempf, “Semiconductor supply network simulation”, 2003 

Winter Simulation Conf, 7-10 Dec 03, New Orleans, USA 

Gregoriades, Andreas & Karakostas, Bill, 2003, Unifying business objects and systems dynamics as a paradigm for 

developing decision support systems. Decision Support Systems, 1049, 1-5. 



Größler, Andreas, Stotz, Myrjam & Schieritz, Nadine, 2003, A software interface between system dynamics and 

agent-based simulations – linking Vensim® and RePast®”. 21st International conference, System Dynamics 

Society, July 20-24, New York, USA 

Huang, George Q., Lau, Jason S. & Mak, K. L., 2003, The impact of sharing production information on supply chain 

dynamics: a review of literature., I. J of Production Research, 41 (7), 1483-1517. 

Jefferson, D. and H. Sowizral, 1982, Fast concurrent simulation using the time warp mechanism; part I: local 

control, Technical Report N1906AF, Rand Corp. 

Kim, Y. D., Lee, D. H., Kim, J. U. and Roh, H. K., 1998, A simulation study on lot release control, mask 

scheduling, batch scheduling in semiconductor wafer fabrication facilities, Journal of Manufacturing Systems, 

17(2), 107 – 117. 

Kuhl, F., R. Weatherly, and J. Dahmann. 1999. Creating computer simulations: an introduction to the high level 

architecture, Prentice Hall: Upper Saddle River, NJ. 

Law, A. M. and Kelton, W. D., 1991, Simulation modeling & analysis, 2nd edition, McGraw-Hill. 

Lee, Young Hae, Cho, Min Kwan, Kim, Seo Jin, Kim, Yun Bae, 2002, Supply chain simulation with discrete-

continuous combined modeling. Computer and Industrial Engineering, 43, 375-392. 

Levin, Tzur & Levin, Ilya, 2003, Integrating hybrid modeling with system dynamics. 21st International conference, 

System Dynamics Society, July 20-24, New York, USA 

Lin, J. T., Wang, F. and Yen, P., 2001, Simulation analysis of dispatching rules for an automated interbay material 

handling system in wafer fab, International Journal of Production Research, 39(6), 1221-1238. 

Mandal, Purnendu & Sohal, Amrik S. 1998, Modeling helps in understanding policy alternatives: a case. Journal of 

Management in Engineering, Jan/Feb, 41-48. 

Min, H. S., 2002, Development of a real time multi-objective scheduler for semiconductor fabrication systems, Ph. 

D. Thesis, Purdue University, August, 2002. 

Misra, S., Venkateswaran, J., and Son, Y., 2003, Framework for adaptive time synchronization mechanism for the 

integration of distributed, heterogeneous, supply chain simulations, Proceedings of the 2003 ASME Conference. 

MISSION Consortium. 1998. Intelligent manufacturing system (IMS) project proposal: modelling and simulation 

environments for design, planning and operation of globally distributed enterprises (MISSION), version 3.3,  

Shimuzu Corporation, Tokyo, Japan. 



Naim, M. and D. Towill, 1994, Establishing a framework for effective materials logistics management, International 

Journal of Logistics Management, Vol. 5, No. 1, 81-88. 

O’Reilly, J. J. and Lilegdon, W. R., 1999, Introduction to FACTOR/AIM, Proceedings of the 1999 Winter 

Simulation Conference, 201 - 207. 

Peters, B. A. and Yang T., 1997, Integrated facility layout and material handling system design in semiconductor 

fabrication facilities, IEEE Transactions On Semiconductor Manufacturing, 10(3), 360 - 369. 

Ramakrishnan, S., S., Lee, and R., Wysk, 2002, Implementation of a simulation-based control architecture for 

supply chain integrations, The 2002 Winter Simulation Conference, San Diego, CA, December 8-11. 

Cranfield University, 2000, Modeling and design of manufacturing systems, See: 

http://www.cranfield.ac.uk/sims/mem/mdms/aitoroyarbide/researchaitoroyarbide.htm. 

Riddick, F and McLean, C., 2000, The IMS MISSION architecture for distributed manufacturing simulation, 

Proceedings of the 2000 Winter Simulation Conference, Orlando, FL, December 10-13. 

Senge, P., 1994, The Fifth Discipline. Currency Doubleday,  New York, NY, USA 

Son, Y., Jones, A., and Wysk, R., 2003, Component based simulation modeling from neutral component libraries, 

Computers and Industrial Engineering, in press. 

Sterman., J., 2000, Business dynamics – systems thinking and modeling for a complex world, McGraw Hill, New 

York, New York, USA. 

Towill, D., 1996, Industrial dynamics modeling of supply chain. Logistics Information Management, Vol. 9, No. 4. 

Umeda, S., and Jones, A., 1998, An integrated test-bed system for supply chain management, Proceedings of the 

1998 Winter Simulation Conference, 1377-1385. 

Venkateswaran, J. and Son, Y. 2003, Design and development of a prototype distributed simulation for evaluation of 

supply chains, International Journal of Industrial Engineering, in press. 

Vernadat, F. B., 2002, Enterprise modeling and integration (EMI): current status and research perspectives., Annual 

Reviews in Control, 26, 15-25. 

Wein, L M, 1988, Scheduling semiconductor wafer fabrication, IEEE Transactions on Semiconductor 

Manufacturing, Vol. 1, No. 3. 

http://www.cranfield.ac.uk/sims/mem/mdms/aitoroyarbide/researchaitoroyarbide.htm


Market Share Demand

+

Link polarity positive:
If Market Share increases (decreases),
then Demand increases (decreases)

Deliveries
Inventories

-

Link polarity negative:
If Deliveries increase (decrease),
then Inventories decrease (increase)

Production

Orders Filled

      Market Share

Demand

+

+

+

+

 

 

 

 

Inventory
      SalesProduction

Production

Inventory

        Sales

 

Stock  

Outflow  

∂(   Inventory  )  =   Sales - Production  
∂ t 

Sink or source 
 

Valve
 

Inflow



Re-Investment
Allocated to Fab

Plant

Re-Investment
Allocated to Sealer

Plant

Corporate Total
Profit

Re-Investment
Fab

Performance Sealer
Performance

Profit from Fab
Plant Profit from

Sealer Plant

+ +

+

+

+

+
+

+

+

-

 

 

 

Life of Equipment

Number of MachinesDisposal Enlarging Fab capcity

Fab Capacity %

Total Net Income

Reinvestment FundsInvesting in fab Division

Inventory
Distribution of

the FAB
Division ProductionSales

Demand

Costs

<Sales><Costs>

<Fab Capacity
%>

Cost of Inventories
for fab

Fab Cost of
Production

Fab Cost of
SalesSelling price of

a Chip Discrete-Event
Simulation

Model

Number of
Workers HiringRetiring/laying

off/Resignations

Average Time for
Workforce

Hiring %

New R&D and
Productivity

Projects Rate of New R&D and
Productivity Projects

Rate of Finishing
Projects

Averate Time to
Finish Projects

New R&D and
Productivity Projects

%



 



$0

$20

$40

$60

$80

$100

$120

$140

$160

$180

2000 2005 2010 2015

Year

(M
ill

io
ns

) Proportional to
Average Return
Proportional to
Revenues
Proportional to
Earnings

 

$0
$10
$20

$30
$40
$50
$60
$70

$80
$90

$100

2000 2005 2010 2015

Year

(M
ill

io
ns

) Proportional to
Average Return
Proportional to
Revenues
Proportional to
Earnings

 
 

$0

$20

$40

$60

$80

$100

$120

$140

2002 2004 2006 2008 2010 2012 2014

Year

(M
ill

io
ns

) Proportional to
Average Return
Proportional to
Revenues
Proportional to
Earnings



List of captions for figures 
 
Figure 1 Causal Loop Diagrams 
Figure 2 Stock and Flow Diagrams 
Figure 3 Example of Causal Loops Developed 
Figure 4 Partial System Dynamics Model (Developed in Vensim®) 
Figure 5 The fab plant DES model (ARENA®  model) 
Figure 6 Simulated EBIT (Corporate Level) 
Figure 7 Simulated EBIT (Fab Plant) 
Figure 8 Simulated EBIT (Sealer Plant) 
 

 


	Abstract
	Introduction
	2. Background
	2.1 Discrete event simulation in production decisions
	2.2 System dynamics simulation
	2.3 Distributed simulation in manufacturing
	3. Hybrid SD-DES simulation approach
	4. Conceptual description of the SD-DES model
	5. An illustrative example
	5.1 The SD model
	5.2 The DES model of the fab
	5.3 Results and implications
	6. Conclusions and future work
	References

