
 1 Copyright ©

Submitted to Proceedings of DETC'2005
2005 ASME Design Engineering Technical Conference

September 24-28, 2005, Long Beach, California, USA

DETC2005/CIE-85553

A FEATURE-BASED APPROACH TO EMBEDDED SYSTEM HARDWARE AND
SOFTWARE CO-DESIGN

Xuan F. Zha*, Steven J. Fenves, Ram D. Sriram

Manufacturing System Integration Division
National Institute of Standards and Technology

Gaithersburg, MD 20899

Correspnding author, Email: zha@cme.nist.gov

ABSTRACT
An embedded system is a hybrid of hardware and softwarethat
combines software flexibility and hardware real-time
performance. The co-design of hardware and software is the most
critical but difficult issue in embedded system design. In this
paper, we propose a novel feature-based approach to the co-
design of hardware and software in embedded systems. The
approach first defines an extension to the NIST Core Product
Model and then provides an object-oriented UML (Unified
Modeling Language) representation for the embedded system
feature model, including models of embedded system artifacts,
components, features, and HW/SW configuration/assembly. The
extended model provides a feature-based HW/SW component co-
design framework allowing the designer to develop a virtual
embedded system prototype through assembling virtual
components. The resulting feature-based model serves as the
basis for developing reusable and adaptable components/artifacts.
The underlying SW and HW components are determined through
feature configuration, and thus HW/SW co-design is
implemented by using feature-component mapping and
component generation, which may be associated with feature
creation, configuration, analysis and reuse. A case study example
is discussed to illustrate the embedded system model.

 Keywords: Embedded system, feature-based modeling, component-
based approach, UML, object-oriented representation

1. INTRODUCTION

Many industries are witnessing a rapid evolution toward
solutions that integrate hardware and software or incorporate
complete systems on a single chip (SoC). Modern embedded
systems have characteristics (including ever-increasing

complexity and diversity for more functionality, packed into
smaller spaces consuming less power) that demand new
approaches to their specification, design and implementation.
There exist many informal or semi-formal models and
methodologies for separate hardware/software design. However,
there is as yet no unified formal representation, simulation, and
synthesis framework. In the Representation for Embedded
Systems project (Zha and Sriram 2004), we are developing a
standards-based framework for modeling information and
knowledge in embedded systems design, including:
hardware/software co-design methodologies; an integrated
framework for design, modeling and testing; and standard
representations and protocols for exchanging and reusing system-
level information and knowledge so as to enable semantic
interoperability between design software systems in virtual,
distributed and collaborative environments through the entire
lifecycle.
 In this paper, we present a feature-based approach to the co-
design of hardware and software in embedded systems. A
component-based topology and a feature-based model structure
are defined for the integrated representation of HW/SW
components that constitute an embedded system. The feature-
based modeling framework is intended to contain all the required
information for co-design. The present paper focuses on feature-
component mapping and component generation for HW/SW co-
design.
 The organization of this paper is as follows. Section 2
provides an overall approach to embedded system modeling.
Section 3 discusses a component-based approach. Section 4
presents feature-based component modeling for embedded
systems. Section 5 provides an open embedded system feature
model (OESFM) based on the UML representation. Section 6
proposes a feature-based co-design approach. Section 7 provides

 2

a case study. Section 8 summarizes the paper and points out our
future work.

2. OVERVIEW OF HW/SW CO-DESIGN

The co-design process starts with an architecture-independent
description of the intended system’s functionality, the analysis of
constraints and requirements on the system, and the statement of
objectives. This description is independent of HW and SW, and
several system representations may be utilized, e.g., finite state
machines (FSMs). The system is then specified by means of a
conceptual model (addressing functionality and behavior) or a
programming language (e.g., VHDL, Verilog, SpecCharts, etc.)
which is next compiled into an internal representation such as a
data control flow description. This specification/description
serves as a unified system representation that can represent HW
or SW. The HW/SW functional (or architectural) partitioning is
performed on this unified representation. After this step has been
completed, HW, SW and the related interfaces are synthesized.
Evaluation is then performed. The partitioning process is
iterative, and if the evaluation does not meet the required
objectives, another HW/SW partition is generated and evaluated.
Figure 1 is a general view of HW/SW co-design, in which the
ellipses stand for data/information entities in the system design
and the squares stand for system design processes, actions or
activities. The figure does not follow any specific approach;
rather, it reflects a combination of several approaches presented
recently in the literature. Note the partitioning stage and the
integration phase common to all co-design methodologies. Co-
design is still a relatively new, rapidly changing field, so that
there is not one set standard for how it is to be done and many
variations exist.

Analysis of Constraints
Requirements, and Objectives

System Specifications

HW/SW
Partitioning

Hardware Description Software Description

HW Synthesis and
Configuration

Interface Synthesis
Software Generation

& Parameterization

Configuration
Modules

Hardware
Components

HW/SW
Interfaces

Software
Modules

HW/SW Integration
and Cosimulation

Integrated
System

System Evaluation Design Verification

HW Design SW Design

HW/SW Co-Design

Figure 1: HW/SW co-design methodology

3. EMBEDDED SYSTEM MODELING PRINCIPLE

The modeling principle adopted in this research identifies four
abstraction levels for the design of an embedded system: (1)

enterprise; (2) system; (3) component; and (4) feature. The
enterprise level provides a unified view of the system and its
environment by capturing enterprise-related concepts. The
system level determines the system being developed,
distinguishing it from its environment. The environment of a
system consists of information systems or human users that make
use of the services provided by the system itself, as well as other
systems that provide some service used by the system being
developed (de Farias 2001). The component level represents the
system in terms of a set of composed components. A component
may be further decomposed into sub-components. A composite
component is an aggregate of sub-components that, from an
external point of view, is similar to a single component. If a
composite component is part of a component composition, the
design process of this component corresponds to the design
process of an isolated system, and the environment of this system
contains the other components in the composition. The feature
level defines the internal structure of simple components. A
component is structured using a set of related features,
implemented in a feature description or a programming language.
Thus, the design process of a component at the feature level
corresponds to the feature-oriented design process similar to the
traditional object-oriented process. The focus of this work is on
the component level and the feature level. Further details on the
component-level and feature-level modeling are discussed in the
following sections.

4. FEATURE-BASED COMPONENT MODEL FOR
EMBEDDED SYSTEMS

In this research, the feature model is used to provide a formal
description of embedded systems and to formalize knowledge
about its instantiation process. Details of the feature-based
representation and modeling are discussed below.

4.1 Component-Based Modeling

A component is a non-trivial, nearly independent, and
replaceable part of a system that fulfills a clear function in the
context of a well-defined architecture. A component conforms to
and provides the physical realization of a set of interfaces. In the
real world, we easily sense and touch some real hardware
component systems such as Lego blocks, mechanical parts,
square stones, building plants, electronic components, IC chips
or hardware busses. These components generally connect
through ports. A software component is generally a unit of
composition with contractually specified interfaces and explicit
context dependencies only. It can be deployed independently and
is subject to composition by a third party. A run-time software
component is a dynamically bindable package of one or more
programs managed as a unit and accessed through documented
interfaces that can be discovered at run-time. The widely
accepted software component definition is that a software
component is a part of software in binary form not compiled or
rebuilt with contractually specified interfaces (i.e., defined API

 3

and all assumptions in which the component can work). A
component can be deployed independently or used in a plug and
play mode, i.e., it can be dynamically loaded into the system or
dynamically replaced. A software component must have a
mechanism that makes it possible to compose/integrate the
component into the system without the need of modifying and
rebuilding it.

Component 2Component 1

Feature 1 Feature 2

Component 2Component 1 Component 2Component 1

Connectors
Features Component

Figure 2: Component-connector model

 The basic concepts in the component-based modeling
approach are components, connectors and systems, where a
system is a configuration/assembly. Both components and
connectors have connection points called ports for components
and roles for connectors (Figure 2). Thus, design elements
include components, connectors, ports, and roles. Components
are connected to connectors by defining an attachment between
the port of a component and the role of a connector. Connectors
can be viewed as special communication components. One
connector may connect multiple components. Components may
be nested but cannot be connected directly to each other and
neither can a connector to another connector. Components and
connectors have attributes or properties. Properties are un-
interpreted values, i.e., they do not have any semantics defined.
In UML 2.0, some new concepts and major improvements have
been added to support component-based modeling. UML 2.0
includes a set of constructs about components and their
assembly. Component description in UML 2.0 now can include a
set of ports, a set of parts, a set of connectors and a behavior.

4.2 Feature-Based Modeling

4.2.1 Feature Definition and Models

A uniform feature definition that is independent of design
problems can be obtained by developing an abstract and
therefore generally valid “feature identification” (Fisher and
Wang 1995). The following definition provided by the FEMEX

work group (FEMEX=Feature Modeling Experts) is described in
more detail in (Weber 1995):

1. A feature is an information unit.
2. A feature represents a region of interest within a product.
3. A feature has a meaning that often is called the semantic of

the feature.
4. A feature is described by an aggregation of properties.
5. These properties have to be formalized and represented in a

product model.
6. The description of a feature contains the relevant properties

including their values and their relationships (hierarchical
structure and constraints).

7. A feature is defined with respect to a specific view of the
product model.

8. Different views are often related to the different phases of the
product life cycle.

9. A feature can also be described in terms of properties from
several different views, thus relating these views to one
another.

10. A feature serves to establish information units within CAx-
Systems that are of significance to the user.

11. A feature permits some sort of high-level communication
between the user and the system and can form the basis for
simulating human reasoning on the computer.

The definition states that a feature can be viewed as a unit of
“product” information that represents a specific “region”. The
term “product” can imply a real, physical product, i.e., something
that can be grasped, as well as a process. Consequently, the term
“region” technologically describes a spatial or geometrical
portion if an object that can be grasped or represents a time or
process oriented portion of a process (Bley et al. 1996).

 A feature model can be used to describe the commonalities and
differences between the individual hardware/software systems. A
feature model gives a hierarchical structure to the features. There
are four categories of features (Riebisch 2003, Riebisch et al.
2004):

• Functional/behavioral features express the behavior or the

way users may interact with a system. They describe both
static and dynamic aspects of functionality, and may be
expressed through use cases, scenarios or structure. For
example, in the automotive domain, features such as “electric
seat heating” and “extra daytrip mileage counter” belong to
that category.

• Structural features including form features and interface
features express the overall form/structure of an embedded
system or its HW/SW components and their relationships.
Interface features express the system's conformance to a
standard or a subsystem. They describe connectivity and
conformance aspects as well as contained components.
Examples for features from this category are the Firewire
connection for an electronic camera and DDR133 RAM for

 4

memory sockets of a PC. Conformity to standards and
certificates are in this category as well, i.e., USB 2.0
compatible and ISO 9000 certified for a PC. Complete
components or subsystems of special quality or by special
vendors are added to the same category, because the handling
of such features is very similar to interfaces. An example is
the feature Bosch ABS device for a car, if this is valuable to a
customer.

• Parameter features express enumerable, environmental or
nonfunctional properties. They cover all features with
properties demanding quantification by value or assignment
of quality, e.g., color. Examples from the automotive domain
are fuel consumption, top acceleration or wheel size.

• Concept features represent an additional category for
structuring a feature model. They encapsulate abstract
features within a hierarchical feature structure. The root of
the hierarchy always represents a concept feature. Features in
this category have no concrete implementation, but each of
their sub-features provides one. The feature “mechanical
protection” represents an example for such a feature.

Within a feature model, the features are structured by
relationships. Common to all methods mentioned above are
hierarchical relationships between a feature and its sub-features.
The hierarchical relationships control the inclusion of features
into instances. If an optional feature is selected for an instance,
then all mandatory sub-features have to be included as well, and
optional sub-features can be included.

4.2.2 Feature Modeling with UML

Feature modeling is the activity of modeling features and their
interdependencies and organizing them into a feature model. It
provides a model of end-user-visible features that are present in a
given domain by providing a description for each feature and for
each relationship among these features. Feature modeling is
usually based on a two-level structure: (1) a meta-modeling
level, which defines the types of features that can be used, their
properties, and their mutual relationships; and (2) an entity
modeling level where the feature model for the entities of interest
is constructed in terms of the meta-model. Feature models
require the definition of a concrete syntax and language to
express them. The application feature model is seen as an
instance of a feature meta-model (Beuche 2003).
 In this research, we use the UML-based formalisms to
represent the feature meta-model (Zha and Sriram 2004). The
basic ideas can be summarized as follows. A feature can have
sub-features, but the connection between a feature and its sub-
features is mediated by a group. A group gathers together a set of
features that are children features of some other feature. Thus, a
group represents a cluster of features that are children of the
same feature and that obey some constraints on their legal
combination. Groups are also used to enforce local restrictions
(constraints). The same feature can belong to several groups.

Both features and groups have cardinalities. The cardinality of a
feature defines the number of instances of the feature that can
appear in an application. The cardinality of a group defines the
number of features chosen from within the group that can be
instantiated in an application. Cardinalities can be expressed
either as fixed values or as ranges of values. The application
feature model is instantiated from the meta-model.

4.3 Feature-Based Component Modeling

4.3.1 HW/SW Components in Embedded Systems

Typically, an embedded system is housed on a single
microprocessor board with the software (programs) stored in
some form of read-only memory, such as ROM, EPROM, or
flash memory. Embedded system hardware does not use
conventional I/O devices such as a keyboard, mouse or display.
Instead, they interact with the outside world (environment)
through their sensors and actuators. Sensors feed the input data
to the system and actuators deliver the output to the external
environment. Embedded system software can generally be
classified into the following three categories according to the
problem solving methods used (Hassani 2000): (1) numerical or
data processing; (2) user interface; and (3) decision making.
Numerical or data processing software is used in problems that
have numerical solutions; the output response is calculated as a
mathematical function of the inputs. The software is made up of
a few modules that use numeric equations to produce the results.
The user interface module is used for facilitating data/message
passing for users. Decision-making schemes are generally
applied to problems that do not have numerical solutions.
Instead, they use a large number of If-THEN statements,
monotonic logic, and heuristics to achieve reasonable solutions.
The decision-making module typically consists of rules. Rules
are sets of conditional statements with an IF-THEN structure that
logically relates information contained in the condition element
(IF part) to other information contained in the action element
(THEN part).

4.3.2 Embedded System Component Features

Hardware and software features compose hardware and software
components, respectively. This means that feature configurations
determine the underlying SW and HW components. As discussed
above, features are classified into four categories: concept
feature, function (behavioral) feature, parameter feature and
structural feature (interface feature, or port). Thus, these four
categories of features compose both hardware features and
software features, so that the hardware feature may be
specialized into HW concept feature, HW function (behavioral)
feature, HW parameter feature and HW interface feature;
similarly, the software feature generalizes SW concept feature,
SW function (behavioral) feature, SW parameter feature and SW
interface feature. Normally, interface features are also called
ports, thus, we may have a SW port and a HW port, accordingly

 5

in the software and hardware features. A SW port is specialized
into Input Port (Requested Port), Output Port (Provided Port),
In-Out Port, (Resource Port, and Configuration Constants)
(Stewart et al 1993); A HW Port is specialized into Input Port
(Destination Port, Requested Port), Output Port (Source Port,
Provided Port), etc.

4.3.3 Embedded System Feature Interactions

Embedded system connectors represent the connections between
HW/SW components or subsystems in the embedded system.
Connectors may be either HW/SW features or HW/SW
components or HW/SW subsystems composed of HW/SW
features (or HW/SW components). Embedded system connectors
can be specialized into subclasses: hardware connectors,
software connectors and hardware-software connectors.
Hardware connectors represent connections between hardware
components or subsystems in the embedded system. Software
connectors represent connections between software components
or subsystems in the embedded system. Hardware-software
connectors represent connections between hardware and software
components or subsystems in the embedded system. Differing
from interface features of HW/SW components, interface
features of HW/SW/HW-SW connectors are sometimes called
roles.

HW
Component

HW
Interface Feature

HW
Component

HW
Interface Feature

SW
Component

SW
Interface Feature

SW
Component

SW
Interface Feature

HW
Component

HW
Interface Feature

SW
Component

SW
Interface Feature

HW Port

SW Port

HW Port

SW Port

Figure 3: Feature interaction scenario in an embedded

system

 The scenario of feature interactions in an embedded system
can be described as in Figure 3. We propose to model feature
(port) interactions so as to comply with the component-connector
model based on UML 2.0. We also model feature interactions
with feature-solution (FS) graphs which connect features with
solution fragments (Bruin and Vliet 2001). The Form of the
artifact can be viewed as the proposed design solution for the
design problem specified by the function (Fenves 2001, Fenves
et al. 2005). Thus, the feature-solution graph is equivalent to the
feature-form graph. The feature-form graph serves two purposes:
(1) to pinpoint feature interactions; and (2) to guide an iterative
architecture development and evaluation process. The feature
space consisting of feature models describes the desired
properties of the system as expressed by the user. The
form/solution space contains the internal system decomposition
in the form of a reference architecture composed of components.
In addition, the form space may also contain general applicable
solutions that can be selected to meet certain non-functional
requirements. Further details will be discussed in Section 6.

5. UML REPRESENTATION FOR EMBEDDED SYSTEM
FEATURE MODEL

The Open Embedded System Model (OESM) has been
developed at NIST to provide a standard representation and
exchange protocol for embedded systems and system-level
design, simulation, and testing information (Zha, Fenves and
Sriram 2005). In this section, we only discuss in detail the
embedded system feature model in OESM, i.e., the Open
Embedded System Feature Model (OESFM), related to models
of embedded system artifacts, embedded system components,
embedded system features, and embedded system
configuration/assembly. We use UML notation and diagrams to
explain the embedded system feature model.

5.1 Extensions of the NIST Core Product Model to Embedded
Systems

NIST research efforts toward the development of the basic
foundations for the next generation CAD systems lead to the
NIST Core Product Model (CPM) (Fenves 2001, Fenves et al.
2005). However, CPM currently focuses mainly on the physical
artifact (e.g., motor, airplane), especially for electro-mechanical
products or assemblies. There is a need to make some
modifications/extensions for it to be used for an informational
artifact (e.g., software, organizations, business processes, plans
and schedules). Consequently, CPM needs some
modifications/extensions when applied for modeling embedded
systems. The modification/extension of the CPM includes
expanding semantically the definitions of some concepts and/or
extending existing classes or adding new classes. For more
information on the CPM, please refer to (Fenves 2001, Fenves et
al. 2005).
 In the OESFM extension of NIST-CPM, ESArtifact refers
to an embedded system or one of its hardware/software
(HW/SW) components. ESArtifact is extended from the NIST-
CPM Artifact class and specialized into two classes:
HWArtifact and SWArtifact. HWArtifact refers to a hardware
system/component in an embedded system, which is an
aggregation of HWFunction, HWForm and HWBehavior.
HWFunction represents what the artifact is supposed to do;
HWForm represents the proposed design solution for the design
problem specified by the hardware function; and HWBehavior
represents how the hardware artifact realizes its function.
HWForm itself is the aggregation of Geometry, the spatial
description of the artifact, and Material, the internal
composition of the hardware artifact. HWFeature represents any
information in the HWArtifact that is an aggregation of
HWFunction and HWForm. SWArtifact refers to a software
system in the embedded system or one of its software
components, i.e., which is an aggregation of SWFunction,
SWForm and SWBehavior. SWFunction represents what the
software artifact is supposed to do; SWForm represents the
proposed solution for the design problem specified by the

 6

software function; SWBehavior represents how the software
artifact implements its function. SWForm itself is the
aggregation of Architecture, the structural description of the
software artifact, and Code, the internal composition of the
software artifact. The class Code is also specialized into two
subclasses: SourceCode and BinaryCode. SWFeature

represents any information in the SWArtifact that is an
aggregation of SWFunction and SWForm. All the above
entities have their own independent containment (“part-of”)
hierarchies. For more details, please refer to (Zha, Fenves and
Sriram 2005).

SystemPartitioning
(f rom Sy stemPartitioning)

View
(f rom View)

Specification
(f rom NIST Core Model+)

Artifact
(f rom NIST Core Model+)

ESArtifact
(f rom ESArtifact)

ESArtifact Platform
(f rom ESPlatf orm)

CompositionAssociation
(f rom CompositionAssociation)

ESConnector
(f rom ESConnector)

+realizes

+realized by

ESComponent
(f rom ESComponent)

ESFeature
(f rom ESFeature)

1..*

+feature_of+features

1..*

EmbeddedSystem

0..* +sub_systems+sub_systems_of 0..*

+defined_EmbeddedSystem

+configuration_relationship

0..*

+connector_of

+connectors

0..*

1..*

+component_of

+components

1..*

DesignSpecification
(f rom DesignSpecif ication)

SystemSpecification
(f rom SystemSpecif ication)

HWArtifact
(f rom HWArtif act)

SWArtifact
(f rom SWArtif act)

Figure 4: Main schema of the Open Embedded System

Feature Model

5.2 Representation for the Embedded System Feature Model

Figure 4 shows the main schema of the Open Embedded System
Feature Model (OESFM). The main embedded system model
schema incorporates information about design specification,
partitioning, embedded system specification, and component
composition and configuration/assembly relationships. The
model incorporates information about component composition
(part-of) and assembly/configuration relationship. The
component composition of an embedded system is modeled
using this part-of relationship. An embedded system represented
by the EmbeddedSystem class is decomposed into
hardware/software (HW/SW) subsystems and components, and
connectors connecting theses subsystems and components. Each
embedded system component represented as ESComponent
class in the ESComponent package, whether a HW/SW sub-
system or component, is made up of one or more HW/SW
features, represented in the model by ESFeature class in the
ESFeature package. The EmbeddedSystem and
ESComponent classes are subclasses of the ESArtifact class
(extended from NIST-CPM Artifact class, see above).
ESFeature is a subclass extended from the NIST-CPM
Feature class. The composition (configuration/assembly)
relationship is represented by a class named
CompositionAssociation. Components or subsystems in the
embedded system are connected by connectors represented by
ESConnector class in the ESConnector package. Connectors
may be either features or components or subsystems composed
by features or components. We only summarize some of them
below.

 The class ESComponent represents embedded system
component, which is a composition of ESFunctionFeature,
ESConceptFeature, ESParameterFeature and
ESStructuralFeature. It is specialized into HWComponent
and SWComponent. Thus, HWComponent is an aggregation
of HWFunctionFeature, HWConceptFeature,
HWParameterFeature and HWStructural Feature;
SWComponent is an aggregation of SWFunctionFeature,
SWConceptFeature, SWParameterFeature and
SWStructuralFeature. HWInterfaceFeature is a
specialization of HWStructuralFeature;
SWInterfaceFeature is a specialization of
SWStructuralFeature.

HWFeature

ManufacturingFeature
(from ManufacturingFeature)

DesignFeature
(from DesignFeature)

AnalysisFeature
(from AnalysisFeature)

HWParameterFeature

HWFunctionFeature

HWConceptFeature

HWStructuralFeature

HWConnector
(from HWConnector)

HWSWConnector
(from HWSWConnector)

HandlingFeature
(from AssemblyFeature)

AssemblyFeature
(from AssemblyFeature)

ConnectionFeature
(from AssemblyFeature)

HWInterfaceFeature
HWPort

(a) Hardware feature

HWPort
(from HWFeature)

Port
(from Port)

Port

HWConnector
(from HWConnector)

HWInterfaceFeature
(from HWFeature)

SWConnector
(from SWConnector)

HWSWConnector
(from HWSWConnector)

SWInterfaceFeature
(from SWFeature)

SWPort
(from SWFeature)

InterfaceFeatureAssociationRepresentation

InterfaceFeature

InterfaceFeature
Association

ES_ArtifactAssociation
(from ES_ArtifactAssociation)

CompositionAssociation
(from Composi tionAssociation)

ESConnector
(from ESConnector)

 (b) Interface feature

 7 Copyright © XXXX

SWPort

SWFeature

SWParameterFeature

SWFunctionFeature

SWConceptFeature

SWConnector
(from SWConnector)

HWSWConnector
(from HWSWConnector)

SWInterfaceFeature

SWStructuralFeature

(c) Software feature

CompositeFeature

SWFeature
(from SWFeature)

HWFeature
(from HWFeature)

InterfaceFeature
(from InterfaceFeature)

ESFeature

Feature
(from NIST Core Model+)

FunctionFeature

ParamterFeature

ConceptFeature

Port
(from Port)

StructuralFeature

 (d) Embedded system feature

Figure 5: Class diagram of embedded system features
(HW features, SW features, interface features)

 The class ESFeature (Figure 5) is a sub-class of the
Feature class defined in NIST-CPM. It inherits the function
and form information from Feature. ESFeature is specialized
into the following subclasses: ESFunctionFeature,
ESConceptFeature, ESParameterFeature, and
ESInterfaceFeature. ESFeature has three subclasses:
HWFeature, SWFeature, and CompositeFeature.
CompositeFeature represents a composite feature that can be
decomposed into multiple simple features. SWFeature is
specialized into SWFunctionFeature, SWCeonceptFeature,
SWParameterFeature, and SWInterfaceFeature.
SWInterfaceFeature is specialized into SWPort. SWPort is
specialized into InputPort, OutputPort, and InOutPort.
HWFeature is specialized into HWFunctionFeature,
HWCeonceptFeature, HWParameterFeature, and
HWInterfaceFeature. HWInterfaceFeature is specialized
into HWPort. HardwarePort is specialized into InputPort
and OutputPort. The class ESInterfaceFeature is specialized
into two subclasses: HWInterfaceFeature and
SWInterfaceFeature. The class
ESInterfaceFeatureAssociation refers to the
composition/assembly relationship between one or more
embedded system interface features. This relationship is
represented by the class

ESInterfaceFeatureAssociationRepresentation. The diagram
also shows that the ESArtifact Association is the aggregation
of ESInterfaceFeatureAssociation.
 The class ESConnector represents the connections
between components or subsystems in the embedded system.
Connectors may be either features or components or subsystems
composed of features or components. ESConnector is
specialized into subclasses: HWConnector, SWConnector
and HWSWConnector. The HWConnector represents the
connections between hardware components or subsystems in the
embedded system. SWConnector represents the connections
between software components or subsystems in the embedded
system. HWSWConnector represents the connections between
hardware and software components or subsystems in the
embedded system.

6. FEATURE-BASED HW/SW CO-DESIGN

6.1 Feature-Component Mapping

The feature-oriented reuse method (FORM) is an extension of
feature-oriented design and analysis (FODA) that includes form
(architecture for SW) design and object-oriented component
development. The method assists in the development of
reusable and adaptable artifacts from product features (Kang et
al. 1998, 2002). FORM begins with feature modeling, where the
resulting feature model serves as the basis for reusable and
adaptable artifacts. Figure 6a illustrates the development
activities in FORM. During the form (architecture) design
activity, features are allocated to architectural components and
the dependencies between them are specified. The functional
architecture, constituting the architectural components, is
refined into process and deployment architectures, which are
used during the component design process. Figure 7 illustrates
how the feature configuration determines the underlying SW
and HW component configuration.

Feature
Modeling

Architecture
Design

Architecture
Refinement

Candidate Object
Identification

Design Object
Modeling

Component
Design

Feature
Model

Feature
Architecture

Feature
Model

Design Object
Model

Feature
Model

Functional
Architecture

Process
Architecture

Deployment
Architecture

(a) Activities in FORM (Kang et al. 2002)

Feature F

Usage scenario

Design & execution trace

Required components
(C1,…,Cn)

(F,C1),…,(F,Cn)

Concept analysis

Feature-component
correspondence

(b) A mapping scenario

 8 Copyright © XXXX

Figure 6: Feature-component mapping

F0

F11

F12

F13

F122

Feature configuration determines the
underlying SW and HW components

Feature Model Form Architecture

HW

SW

Figure 7: Feature configuration determines the underlying

SW and HW components

 The implementation of the technique described here is
based on the design and execution traces generated by a profile
for different usage scenarios (Eisenbarth 2001), as shown in
Figure 6b. One scenario represents the invocation of one single
feature or a set of features and yields all artifacts/sub-artifacts
(e.g., sub-programs as sub-software artifacts) executed for these
features. These artifacts/sub-artifacts (sub-programs) identify
the components (or are themselves considered components)
required for certain features. The required components for all
scenarios and the set of features are then subject to concept
analysis. Concept analysis gives information on relationships
between features and required components.

6.2 Component Generation

In this section, we propose a systematic technique that generates
system components from functional as well as non-functional
requirements. The generation technique is based on two pillars:
1) Feature-form (FrFm) graphs. The FrFm-graph captures
architectural knowledge in the form of desired features (e.g.,
functional and non-functional requirements) and forms
representing solutions that realize these features (e.g.,
architectural and design patterns).
2) Top-down component composition. The steps in this process
are:

i) derivation of a reference architecture that meets the set of
functional requirements;
ii) application of known design solutions/forms focusing on
non-functional requirements as codified in the FrFm-graph.

Typically, the generation technique requires several iterations.
These iterations might also involve backtracking steps because
we usually have to deal with conflicting requirements.
 There are two spaces, namely the feature space and the
form/solution space, recognized in the FrFm-graph. The Feature

(Fr) space contains the requirements, whereas the Form (Fm)
space contains forms/solutions addressing these requirements.
Features as well as forms/solutions are decomposed in AND-
(EX)OR decomposition trees. An AND decomposition of a
node in either the feature or the form space means that all its
constituents must be available, an OR requires an arbitrary
(>=0) number of constituents, and an EXOR requires precisely
one constituent. The key idea is that a feature in the Feature
space may select a form in the Form space as defined by
directed selection links between nodes (indicated by a solid line
in Figure 8). It is also possible to explicitly rule out a particular
form (solution). This is done by connecting a feature to a form
with a negative selection link (indicated by a dashed line).
Considered as an example is a Client-Server system in which a
client component requests a server component to perform one
of its duties (Bruin and Vliet 2001). A FrFm-graph for the
Client-Server system is shown in Figure 8.

Feature
Space

Form
Space

Feature
Space

Form
Space

 Figure 8: Feature-Form graph for the Client-Server system

6.3 Architectural Form Modeling

Form modeling, also referred as architectural modeling, is the
framework for constructing an application. An architectural
model is the high-level design solution (form) of the
design/application. It defines the basic building blocks,
including basic partitions and interconnections necessary for
constructing the design/application. The architectural form
model serves as a frame for organizing architectural elements.
Two of the fundamental works on architectural form modeling
are the “4+1 view” model (Kruchten et al. 1995) and the “4
views” architectural model (Hofmeister et al. 2000). The “4+1
View” model suggests organizing the architectural descriptions
in five different categories called views: logical view, process
view, physical view and development view. The fifth view,
namely the user’s view, contains scenarios and use cases and is
used for defining requirements and for validating the previous
four. The model separates static and dynamic aspects of the
software architecture. The solutions to functional requirements
are concerned mainly in the logical view. The process view
focuses on dynamic aspects of the model and also describing
real-time (runtime) behavior. The physical view shows the
solutions primarily to non-functional requirements and maps
software to hardware. The development view focuses on the
actual software module organization and on the software
development environment. It also focuses on requirements

 9 Copyright © XXXX

related to the ease of development, software management, reuse
or commonality, and to the constraints imposed by the toolset or
the programming language. The “4+1 views” architectural
model has become very popular during the last decade,
especially for new development. The “4 views” architectural
model also proposes separate descriptions of the different
architectural parts. The four views presented are: conceptual
view, module view, execution view and code view. The
conceptual view describes the system in terms of its major
design elements and the relations between them. The module
view presents the decomposition of the system and the
partitioning of modules into layers. The code view is the
organization of the source code into object code, libraries and
binaries, then in turn into versions files and directories. The
mapping from software to hardware and distribution of the
software components is the task of the execution view. Both
models have their advantages and disadvantages with the “4
views” architectural model addressing the case of “mixed”
software systems - building on both object and non-object
oriented technology - in a more efficient way. “Mixed” software
systems are common in software legacy systems. For this reason,
in practice, we may need to combine these two architectural
models for embedded systems, in which the “4 views” model is
especially used as the basic architectural model of embedded
software.

7. CASE STUDY

In this section, we use a simple hydraulic measurement and
control system (HMCS) as a case study to illustrate the feature-
based HW/SW co-design approach discussed above. This
example is inspired by a weather station system (Beuche 2003)
and described in (Zha and Sriram 2004). The goal is to design a
complete hydraulic measurement and control station for
testing/diagnosing car antilock braking systems (ABS) based on
a small experimental microcontroller ATMEL ATMEGA103.
The microcontroller board is equipped with several sensors
(pressure, temperature, speed) and has an LCD display, a serial
controller, a USB controller, and Modem/Internet controller for
output and input purposes. Figure 9 shows the schematic of the
hydraulic measurement and control system. Table 1 gives a
partial list of the components features. Table 2 provides a
component list of the system. The feature-form mapping for
HW/SW co-design is shown in Figure 10, including feature
configuration, feature diagram and its UML representation,

HW/SW components. Based on these features, HMCS can be
designed using the prototype system developed for feature-
based embedded system virtual prototyping. This prototype
system incorporates the feature-modeling tool, CaptainFeature
(2004), so that HW/SW co-design can be implemented.

Speed

Pressure

Temperature

Hydraulic
System

AVR-Microcomputer
Controller

USB RS232 Modem/InternetABS

Display

PC-Connection

UDP/SLIP/TCP/IP or special protocol over
USB/RS232/Modem/Internet

PC

Speed

Pressure

Temperature

Hydraulic
System

AVR-Microcomputer
Controller

USB RS232 Modem/InternetABS

Display

PC-Connection

UDP/SLIP/TCP/IP or special protocol over
USB/RS232/Modem/Internet

PC

Figure 9: The hydraulic measure and control system

Speed
Sensor

Hydraulic
Measurement
and Control
System

LCD
Display

ABS

Hydraulic
System

HW

SW

Features/Feature Configurations HW/SW Form Architecture

AVR-Micro
computer

Figure 10: Feature-form mapping for HW/SW co-design

Table 1: Partial component feature list of the system

Feature descriptions ID Component
name Concept

feature
Functional/Behavioral

feature
Structural

feature
(interface)

Parameter
feature

1 Hydraulic
system

Actuator,
power supply

Speed,
pressure,
temperature

Input port,
output port

Cost $, weight, size

 10 Copyright © XXXX

2 Pump Power supply Power,
pressure,
speed,
flow,
etc.

Input port,
output port

Cost $, weight, size

3 Valve Flow control Viscosity,
pressure,
ambient temperature,
max flow,
etc.

Input port,
output port

Cost $, weight, size

4 Cylinder Actuator, force
transmission

Load (transmission force
limit),
etc.

Input port,
output port

Cost $, weight, size

5 Microcomputer
controller

Processor and controller Memory size,
etc

64 Pin TQFP
(Input port,
output port)

Cost $,
size

6 Speed sensor Input (speed) Resolutions Input port,
output port

Cost $,
size

7 Pressure sensor Input (pressure) Resolutions Input port,
output port

Cost $,
size

8 Temperature
sensor

Input (temperature) Resolutions Input port,
output port

Cost $,
size

9 LCD Display Output
(formatted and
unformatted)

Resolutions Input port Cost $,
size

10 RS232 –Serial Output(formatted, UDP,
unformatted)

11 RS 232 driver Output (interrupt
operation, change
parameters, SCC, SCI,
UART)

Size,
running speed,
etc

Input port,
output port

File Size

12 USB protocol Output (formatted and
unformatted)

Transmission rate,
etc.

13 Modem/Internet
protocol

Output (formatted,
TCP/IP, unformatted)

Connection speed,
Transmission rate,
etc.

… … … … … …

Table 2: Component list of the system

ID Component Name Functional Description HW/SW
1 Micro controller board Storage and memory (4KB RAM, 8kB flash memory) HW (electronic)
2 Speed sensor Measure speed HW (mechanical)
3 Pressure sensor Measure pressure HW (mechanical)
4 Temperature sensor Measure temperature HW (mechanical)
5 LCD display Display results HW(electronic)
6 PC computer Central processing and control,

Data terminal equipment (DTE)
HW (electronic)

7 Hydraulic system Actuator of ABS (pump, valve) HW (mechanical)
8 Antilock braking system

(ABS)
Anti-lock the braking system of a car HW (mechanical)

9 Modem/Network card Data communicating equipment (DCE) HW (electronic)
10 Interface cable Connect HW (electronic)

 11 Copyright © XXXX

11 Modem protocol & Internet
protocol (TCP/IP)

Connect/communicate,
data transmission and exchange

SW (Data processing)

12 USB protocol (driver) Connect, data transmission and exchange SW (Data processing)
13 RS232 protocol (driver) Connect, data transmission and exchange SW (Data processing)
14 LCD output driver Determine how PC will communicate with an LCD SW (Data processing)
15 Pressure sensor driver Determine how microcomputer communicates with a pressure

sensor
SW (Data processing)

16 Speed sensor driver Determine how microcomputer communicates with a speed
sensor

SW (Data processing)

17 Temperature sensor driver Determine how microcomputer communicates with a temperature
sensor

SW (Data processing)

18 Diagnosis system Diagnose the fault and provide maintenance suggestions SW (Decision-making)

8. SUMMARY AND CONCLUSIONS

In this paper, we describe a feature-based modeling approach to
co-design of hardware and software in embedded systems. The
approach first defines an extension to the NIST Core Product
Model and then provides an object-oriented UML
representation for the embedded system feature model
(OESFM), including models of embedded system artifacts,
components, features, and HW/SW configuration/assembly.
This model can provide a feature-based HW/SW component co-
design framework and allow the designer to develop a virtual
embedded system prototype through assembling virtual
components. A case study example is discussed to illustrate the
HW/SW co-design process in the embedded system model.
Currently, we are developing feature ontology for HW/SW co-
design based on the OESFM. Our near future work is expected
to make the model/approach harmonized with other
models/approaches and interoperate with various EDA systems
and also explore the possibilities of integrating it with virtual
prototyping systems based on a component agent technology.

Disclaimer
No approval or endorsement of any commercial product,
service or company by the National Institute of Standards and
Technology is intended or implied.

REFERENCES

Aßmann, U., Schmidt, R. (1997), Towards a model for composed
extensible components, Workshop Foundations of Component-
Based Systems, Proceedings, Zurich, Switzerland

Beuche, D., Papajewski, Holger, Schroder-Preikschat, W. (2004),
Variability management with feature models, Science of Computer
Programming, Elsevier Publishers, to appear

Beuche, D. (2001), Feature based composition of an embedded
operating system family, Proceedings of ECOOP 2001 Workshop
#08 Feature Interaction in Composed System, In Association with
the 15th European Conference on Object-Oriented Programming,
Budapest, Hungary

Beuche, D. (2003), Composition and Construction of Embedded
Software Families, PhD Dissertation, der Otto-von-Guericke-
Universität, Magdeburg, Germany

Berg, K. Müller, J., Bishop, J. and van Zyl, J. (2004), The use of
feature modeling in component evolution, Technical Report,
http://polelo.cs.up.ac.za/publications.htm

Bley, H., Seel, U., and Gunther, K.G. (1996),Solving technical
problems in assembly system’s design, Annals of the CIRP,
Vol.45/1, pp.11-15, 1996

Bruin, H. and Vliet, H. (2001), Feature and feature interaction
modeling with feature-solution graphs, 2001

Captain Feature (2004): Project page. https://sourceforge.net/projects/
captainfeature, Last accessed in March 2004.

de Farias, C. R Guareis., Ferreira Pires, L., van Sinderen, M. and
Quartel, D., A combined component-based approach for the design
of distributed software systems,
wwwhome.cs.utwente.nl/~pires/publications/ftdcs2001.pdf

Deursen, A. and Klint, P. (2001), Domain-Specific Language Design
Requires Feature Descriptions, CWI Report, SEN-R0126, ISSN
1386-369X

Eggermont, L. D.J. (ed.) (2002), Embedded Systems Roadmap 2002,
Vision on Technology for the Future of PROGRESS, 30 March

Eisenbarth, T., Koschke, R. and Simon, D. (2001), Feature-driven
program understanding using concept analysis of execution traces,
Proceedings of the International Workshop on Program
Comprehension (IWPC’01), May 12-13, Toronto, Canada

Fenves, S. (2001), A Core Product Model for Representing Design
Information, NISTIR 6736, NIST, Gaithersburg, MD.

Fenves, S., Foufou, S., Bock, C., Bouilon, N., Sriram, R.D., (2005),
CPM 2: A Revised Core Product Model for Representing Design
Information, NISTIR 7185, NIST, Gaithersburg, MD.

Fisher, A. and Wang, K.K.(1995), An interaction mechanism for 3D
object-oriented feature-based models in interactive design and
simulation, CIRP Annals, Vol.44/1. pp.101-104

Gurp, J., and Bosch, J., Managing variability in software product lines,
Landelijk Architectuur Congres, Amsterdam 2000

Hassani, M., A Component-based Methodology for Real-time
Decision-making Embedded Systems, PhD Dissertation,
University of Maryland, 2000

Crnkovic, I. and Larsson, M. (2001), Component-based software
engineering – new paradigm of software development, Invited
Talk & Invited Report, Proceedings of MIPRO 2001, Opatija,
Croatia

 12 Copyright ©

Hofmeister, C., Nord, R. and Soni, D. (2000), Applied Software
Architecture. Addison Wesley.

Jansen, A., Smedinga, R., Gurp, J. and Bosch, J., (2003), Feature-
based product derivation, http://www.cs.rug.nl/~rein/ publications/
FeatureComposition.pdf

Kang, K., Kim, S., Lee, J., Kim, K., Shin, E. and Huh, M. (1998),
FORM: A feature-oriented reuse method with domain-specific
reference architectures, Annals of Software Engineering, Vol.5, J.
C. Baltzer, AG Science Publishers, Red Bank, NJ, USA, pp. 143-
168.

Kang, K. C., Lee, J. and Lee, K. (2002), Feature Oriented Product
Line Software Engineering: Principles and Guidelines, Chapter 2,
Domain Oriented Systems Development: Perspectives and
Practices, Taylor & Francis, UK

Kruchten, P. (1995), The 4+1 View Model of Architecture, IEEE
Software, 12(6): 42-50

Pashov, I., and Riebisch, M. (2004), Using feature modeling for
program comprehension and software architecture recovery,
Proceedings of 11th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Systems
(ECBS2004), Brno, Czech Republic, pp. 406-117

Rozenblit, J. and K. Buchenrieder (editors) (1994), Codesign
Computer -Aided Software/Hardware Engineering, IEEE Press,
Piscataway, NJ

Rastofer, U. (2002), Modeling with components– towards a unified
component meta model, Proceedings of ECOOP 2002 Workshop
#12 Model-based Software Reuse, Malaga, Spain

Riebisch, M. (2003), Towards a more precise definition of feature
models, Modeling Variability for Object-Oriented Product Lines,
M. Riebisch, J. O. Coplien, D, Streitferdt (Eds.), Book On
Demand Publ. Co., Norderstedt, pp. 64-76.

Riebisch, M., Streitferdt, D. and Pashov, I. (2004), Modeling
variability for object-oriented product lines, in Buschmann, Frank;
Buchmann, Alejandro P.; Cilia, Mariano (Eds.): Object-Oriented
Technology, ECOOP 2003 Workshop Reader, Springer, Lecture
Notes in Computer Science, Vol. 3013, pp. 165 - 178.

Stewart, D.B., Volpe, R.A, and Khosla, P.K. (1993), Integration of
real-time software modules for recogfiguration sensor-based
control systems, Proceedings of International Symposium on
Intelligent Robotics (ISIR’93), Bangalore, India

Tierney, P.J. and Ajila, S. A. (2002), FOOM - Feature-based object
oriented modeling: implementation of a process to extract and
extend software product line architecture, PDSTD’02 – SCI2002 /
ISAS2002, July 14 – 18, 2002, Orlando, USA.

Weber, C.H. (1995), Feature-definition, FEMEX Working Group I,
Feature Definition and Classification, Chair of Engineering Design
/CAD, University of the Saarland, Germany

Zha, X. F. and Sriram, R.D. (2004), Feature-based component model
for design of embedded system, in Intelligent Systems in Design
and Manufacturing V, edited by B. Gopalakrishnan, Proceedings
of SPIE Vol.5605 (SPIE, Bellingham, WA, 2004), pp. 226-237

Zha, X.F., Fenves, S.J. and Sriram, R.D. (2005), Object oriented
representation for embedded system using UML, Working Paper,
National Institute of Standards and Technology, USA

