
An Industrial Validation of a Semantic-Mediation Architecture

Marko Vujasinovic, Nenad Ivezic, Boonserm Kulvatunyou, Edward Barkmeyer
Manufacturing Engineering Laboratory

National Institute of Standards and Technology
100 Bureau Drive, Gaithersburg, MD 20899, USA

{ marko.vujasinovic, nenad.ivezic, boonserm.kulvatunyou, edward.barkmeyer } @nist.gov

Michele Missikoff, Francesco Taglino
Laboratory for Enterprise Knowledge and Systems, IASI

Consiglio Nazionale delle Ricerche
Viale Manzoni 30, 00185 Rome, Italy

{ missikof, taglino } @iasi.cnr.it

Zoran Marjanovic, Igor Miletic
Faculty of Organizational Sciences

University of Belgrade
Jove Ilica 154, 11000 Belgrade, Serbia

marjanovic.zoran@fon.bg.ac.yu, igor.miletic@brezasoftware.com

Abstract

This paper presents an industrial validation of a semantic-mediation architecture that enables business-to-business

(B2B), standards-based interoperability between heterogeneous legacy applications. The architecture was

implemented using a state-of-the-art semantic-mediation toolset for design-time and run-time integration tasks.

The design-time tools supported a domain ontology definition, message annotations, message schema

transformations, and reconciliation rules specifications. The run-time tools performed exchanges, transformations,

and reconciliations of the messages. The validation pilot was based on an automotive B2B integration scenario

where heterogeneous business applications exchange supply-chain inventory information.

Keywords; semantic-mediation architecture, business-to-business interoperability, ontologies, validation data

Today, manufacturing organizations are challenged to accomplish timely and accurate information

exchange among the inventory-management applications and across the supply-chain tiers. As a response to this

challenge, the Automotive Industry Action Group (AIAG) initiated the Inventory Visibility and Interoperability

 1

(IV&I) project to establish standards for interoperable data exchange among the inventory visibility (IV)

applications1.

The IV applications use Internet-based technologies to enable near real-time material management by

displaying trading-partner inventory data. Currently, the IV applications are not interoperable – they use proprietary

electronic visibility models and message sets for inventory management.

Recently, the IV&I project focused on data exchange among business applications to enable the so-called

electronic Kanban (eKanban) business process. The eKanban business process regulates the flow of goods from the

supplier to match actual usage by the customer, using standard material packages or kanbans to facilitate efficient

material replenishment. The objective of the project is to provide standard IV&I eKanban messages that may be

exchanged between IV tools. Figure 1 shows the target IV&I architecture. If the standard message set is

implemented by the IV&I tools, the supplier will be in a position to select one IV&I tool to communicate with all of

its customers, and that tool will communicate the information to the appropriate IV tool for each customer. Enabling

suppliers to use only one IV&I application for all customer channels could result in the projected savings of $255

million annually across the automotive supply chain2.

The standards-based approach requires each tool provider to build new software to convert between its

internal model and the standard exchange forms. This is error-prone and labor-intensive because it requires human

agents to interpret the intent of specifications that use informal methods such as syntactic notations, diagrams and

text to convey the data exchange requirements and their business meaning. This paper describes a novel, semantic-

mediation-based architecture for overcoming some of the problems of implementing to an exchange standard. We

analyzed representational support of the new architecture and an enabling toolset for the adopted automotive B2B

validation scenario.

 2

Manufacturer M2

data from legacy system

Supplier

M2

S

Manufacturer M1

data from Enterprise
Resource Planning

system

Vendor A
IV&I Tool

Vendor B
IV&I Tool

M1

IV&I eKanban Messages
& Protocol

Figure 1– An example of the desired interoperability of IV&I Tools: Supplier S utilizes a single IV&I

tool to exchange data with all its customers, either directly (M2) or via other IV&I applications (M1)

that exchange standard IV&I eKanban messages

Semantic-mediation architecture for standards-based interoperable applications

The proposed architecture includes advances at three levels: (1) formal capture of the semantic concepts in the

business domain; (2) precise annotation of message interfaces and specification of semantic reconciliation rules

between application and standard message interfaces; and, (3) automated and consistent standard-interface

implementation through the reconciliation-rules execution. Similar architecture for semantic reconciliation has been

proposed before3. The important contribution of this architecture is the use of semantic-mediation techniques to

achieve standards-based interchange. Activities supported by the architecture may be summarized as follows:

• At the Business Domain Ontology Definition level, the domain concepts are formalized on the basis of the

business process model and the data-exchange-requirements specification, to capture the intended meaning of

the information exchanges. As a result, Reference Ontology (RO) is developed using an ontology authoring

tool.

• At the Design-Time Annotation and Reconcilation Rules Specification level, two independent annotation

activities take place: (1) each application provider annotates his application interface (typically an XML

schema) to relate each data item to the corresponding information concept in the RO; and (2) following

 3

adoption of the standard message schemas (also called Business Object Documents or BODs), the eKanban

message specification team annotates the BODs in the same way. The annotations are done using a semantic-

annotation tool. Next, each team uses the annotations to define the data reconciliation rules between message

instances that correspond to their respective schemas on one side, and RO populations on the other. A

reconciliation tool is used to generate a rule base for each of the reconciliation situations: (1a) an application

message instance is translated to a set of RO instances, and (1b) a set of RO instances is translated to an

application message instance; and (2a) a set of RO instances is translated to the BOD format, and (2b) a BOD

instance is translated to a set of RO instances.

• At the Run-Time Reconciliation Execution level, when the application is sending, a reconciliation engine

executes a two-step conversion process using the appropriate reconciliation rule bases, translating message

instances from the proprietary application data format to RO instances, and then translating the RO instances to

the BOD format. When that application is receiving, the reconciliation engine translates from the BOD

messages to the proprietary format using the appropriate rule bases. Effectively, the reconciliation rule

execution engine implements the standard interface for the application. Ultimately, the BOD instances are sent

over the Internet using standard Web Service (WS) calls.

A principal benefit of the new architecture is to provide a basis for objective, unambiguous interpretation of

the interoperability artifacts. First, by representing the business domain concepts in an formal ontology, the meaning

of the message elements, and their relationships over a suite of messages, may be established unambiguously. Next,

it is possible for the software engineer to derive the actual reconciliation rules with greater clarity and consistency,

and with greater computational support. Finally, the reconciliation rules may be executed directly at run-time,

providing a consistent, traceable specification of the transformation of the message instances.

ATHENA toolset support for the semantic-mediation architecture

We implemented the proposed architecture with a semantic-mediation toolset developed within the EU ATHENA

research project4. The semantic-mediation architecture, as supported by the ATHENA toolset, is shown in Figure 2.

 4

Private Interface Model Definition
& Private-to-Public Interface
Reconciliation Definition

Public Standards-Based
Interface Modeling

Business Domain Ontology Definition

XSD2RDFS
Transformation

XSD2RDFS
Transformation

eKanban Reference
Ontology

ATHOS
Ontology

Development

Application
Interface Schemas

ARGOS
Reconciliation

Definition

ASTAR
Annotation

Standard Interface
Schema (i.e. BOD)

ARGOS
Reconciliation

Definition

ASTAR
Annotation

Business Process and Standards
Development Group Effort

Application Provider Effort

D
es

ig
n

Ti
m

e
Ru

n
Ti

m
e

Reconciliation
Rules

Reconciliation
Rules

Standard-
conformant
Application

Internet

Standard
Message
over WS

Public Standards- Based
Run-Time Message

Exchange

Run-Time
Reconciliation
Execution ARES

Reconciliation
ExecutionProprietary

Message
Interface

Legacy
Application A

Standard
Message
Interface

Annotation base
Annotation base

A AB BC C

Coordinator
Workflow Engine

Johnson WS
Engine

XML2RDF RDF2XML

Proprietary
Message

Run-Time
Coordinator
Gateway

Figure 2 ATHENA-enabled Semantic Mediation Architecture

During the analysis phase, the ATHOS ontology-management tool5 was used to capture the RO. The RO

was based on a specification of the eKanban business process and data requirements, interviews with industry

experts, and eKanban BOD schemas adopted by the automotive industry.

At design-time, The XSD2RDFS transformer tool6 was used to convert XML message schemas for

automotive IV applications, and the standard eKanban BOD message schemas, to corresponding Resource

Definition Framework (RDF) Schema message representations.

Next, the ASTAR RDF Schema model annotation tool7 was used to define the semantic relationships between the

data elements in the RDF-based message schemas and the business concepts in the RO. This is the key process in

semantic mediation.

 5

Then, the ARGOS reconciliation rules authoring tool8 was used to create reconciliation rule bases that implemented

conversion of the data elements defined by the RDF-based message schemas to and from RO instances. When

combined, these rules effectively specified the data transformations between the proprietary messages and the

industry standard BODs.

At run-time, the XML2RDF and RDF2XML transformer tools6 transform XML message instances from

and to RDF representations compatible with the transformed schemas.

The ARES9 run-time reconciliation engine executes the reconciliation rule bases defined at design-time on RDF-

based message instances representation. Together with the transformation steps, this tool converts messages

between the proprietary forms and the standard forms.

The Coordinator Tool was developed to orchestrate the run-time transformer tools, the ARES tool, and the

Johnson10 WS execution engine, which enabled robust support for webservices over the Internet, so as to transform

a proprietary message into an eKanban-conformant message.

Validation Pilot

The objective of the validation pilot was to assess the proposed architecture and the supporting ATHENA toolset.

Within this scenario, heterogeneous business applications exchange inventory visibility information in the form of

standard eKanban messages. In the following, from the perspective of the application provider, we discuss the steps

an IV application developer sees, and, in particular, we detail the design-time steps that are applied to an IV

application message.

To validate the architecture we employed two independently developed IV applications (capable of sending and

receiving only their proprietary versions of the eKanban AuthorizeKanban message) and an IV&I-conformant

application capable of receiving the standard SyncShipmentSchedule message (Authorize Kanban BOD):

• The Apolon11 open source IV application with an RDF Schema-based proprietary interface.

• A GM IV experimental enterprise application with an XML Schema-based proprietary interface.

 6

• A Ford Test Harness (FTH) application with an XML Schema-based IV&I-conformant interface.

The Apolon application (running in Serbia) successfully exchanged a message with the FTH (running in

Maryland, USA). Also, the GM application (running in Michigan, USA) successfully exchanged information with

the FTH and Apolon. Both the GM and Apolon applications utilized the Coordinator gateway.

Reference Ontology

The eKanban Reference Ontology12 formally captured the business concepts and relationships for the eKanban

business process, as developed by the IV&I eKanban team of industry analysts.

 A portion of the RO is shown in Figure 3. SyncShipmentSchedule is a Message sent by a sender (in this

case, customer) to a receiver (in this case, supplier) to update a ShipmentSchedule. ShipmentSchedule is a

BusinessObjectDocument that describes all of the shipments under some agreement.. Each ScheduleLine

corresponds to an eKanban arrangement, called a KanbanLoop, for shipments of one Item from the ShipFromParty

to the ShipToParty. The unit of shipment is a Kanban. In effect, the message authorizes shipment of one or more

Kanbans to the customer site, by changing the KanbanStatus of those Kanbans.

 7

Message

+creationTime:DateTime
+messageId:Name

BusinessObjectDocument

*

BOD+1

SyncShipmentSchedule

ShipmentSchedule

+scheduleType:ScheduleType

BOD+1

*

ScheduleLine

+lineNumber:Integer[0..1]
+period:TimePeriod[0..1]
+startOfShipments:DateTime
+totalReceived:Quantity

onSchedule+1

lines+1..*

KanbanLoop

+loopSize:Integer
+quantityPerKanban:Quantity
+loopPrefix:Name[0..1]

schedule+ 1

loopServed+0..1

Kanban

+kanbanNumber:IntegerinLoop+

1 kanbans+

1..*

KanbanStatus

+status:KanbanStatusCode
+effective:DateTime

1 status+

1

Party* receiver+

1* sender+
1

ShipFromParty
* shipFrom+

1..*

ShipToParty* shipTo+

1

PartyRole

+/name:Name
+agencyId:AgencyId[0..1]

participant+ 1

*

DUNSIDID

+identifier:Name

PartyId

refersTo+1

Ids+1..*

Item* shipmentItem+

1

<< subPropertyOf >>

Figure 3 – A portion of the IV&I e-Kanban Reference Ontology

Design Time

Before the run-time message exchange could be accomplished, the following steps were completed at design-time:

1) Message schema transformation (step A in Figure 2) of the standard SyncShipmentSchedule BOD and

the GM-proprietary AuthorizeKanban message schema to corresponding RDF Schema-based representations.

2) Message schema annotation (step B in Figure 2) of the standard SyncShipmentSchedule BOD, and GM

and Apolon AuthorizeKanban RDF Schemas using the ASTAR tool.

3) Message reconciliation rules specification (step C in Figure 2) using the ARGOS tool to create both (a)

forward rules to reconcile data from the SyncShipmentSchedule BOD, and GM and Apolon AuthorizeKanban RDF

instances to RO instances, and (b) backward rules to reconcile data from the RO instances to the

SyncShipmentSchedule BOD, and Apolon AuthorizeKanban RDF instances.

 8

Message Schema Transformation

The XSD2RDFS Tool enabled the business applications that currently use XML Schema-based interfaces to use the

ATHENA RDF-based semantic mediation tools. For the application provider, this step was automatic and

transparent. The XSD2RDFS tool transforms any given XML Schema into an RDF Schema.

Listing 1 shows the XSD2RDFS transformation for a portion of the GM-proprietary AuthorizeKanban

message. XML Schema elements (such are gmSyncShipmentSchedule, sender, and DUNS, shown at the left side) are

transformed into corresponding RDF Schema classes (gmSyncShipmentSchedule, gmSyncShipmentSchedule_sender,

and gmSyncShipmentSchedule_sender_DUNS, shown at the right side). For each simple XML Schema element, a

corresponding RDF property is created (e.g., gmSyncShipmentSchedule_sender_DUNS_sValue for the DUNS

element). Each parent-child structural relation between XML Schema elements is transformed into a RDF property

(e.g., gmSyncShipmentSchedule_sender_DUNS_PROP RDF property for the parent-child relation between the

sender and DUNS XML Schema elements).

Listing 1. A portion of an XSD2RDFS transformation

Message Schema Annotation

Semantic annotation is a means for defining the relationships between the elements in a message and the

business meaning of those elements as captured in the reference ontology. So the critical drivers are the definitions

of the terms used in the ontology and the documentation and usage guidelines for the message elements.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://gm.com/gmSyncShipmentSchedule/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 name="gmSyncShipmentSchedule"
 targetNamespace=
 "http://gm.com/gmSyncShipmentSchedule/">
 <xsd:element name="gmSyncShipmentSchedule">
 <xsd:complexType>
 <xsd:sequence>
 …
 <xsd:element name="sender“
 type="tns:partner"/>
 ….
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
<xsd:complexType name="partner">
 <xsd:sequence>
 <xsd:element name="DUNS" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 …..
</xsd:schema>

<rdf:RDF xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns="http://www.nist-athena-ivi.com/rdfs#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#">
<rdfs:Class rdf:about="http://www.nist-athena-ivi.com/rdfs#gmSyncShipmentSchedule">
</rdfs:Class>
...
<rdfs:Class rdf:about=" http://gm.com/gmSyncShipmentSchedule/rdfs#gmSyncShipmentSchedule_sender">
</rdfs:Class>
<rdfs:Class rdf:about=" http://gm.com/gmSyncShipmentSchedule
/rdfs#gmSyncShipmentSchedule_sender_DUNS">
</rdfs:Class>

<rdf:Property rdf:about=" http://gm.com/gmSyncShipmentSchedule
/rdfs#gmSyncShipmentSchedule_sender_DUNS_sValue">
 <rdfs:domain rdf:resource= http://gm.com/gmSyncShipmentSchedule
/rdfs#gmSyncShipmentSchedule_sender_DUNS"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
</rdf:Property>
...
<rdf:Property rdf:about=" http://gm.com/gmSyncShipmentSchedule
/rdfs#gmSyncShipmentSchedule_sender_PROP">
 <rdfs:domain rdf:resource=" http://gm.com/gmSyncShipmentSchedule /rdfs#gmSyncShipmentSchedule"/>
 <rdfs:range rdf:resource="http:// http://gm.com/gmSyncShipmentSchedule
/rdfs#gmSyncShipmentSchedule_sender"/>
</rdf:Property>
<rdf:Property rdf:about=" http://gm.com/gmSyncShipmentSchedule
/rdfs#gmSyncShipmentSchedule_sender_DUNS_PROP">
 <rdfs:domain rdf:resource=" http://gm.com/gmSyncShipmentSchedule
/rdfs#gmSyncShipmentSchedule_sender"/>
 <rdfs:range rdf:resource=" http://gm.com/gmSyncShipmentSchedule
/rdfs#gmSyncShipmentSchedule_sender_DUNS"/>
</rdf:Property>
...
</rdf:RDF>

 9

http://www.w3.org/1999/02/22-rdf-syntax-ns

 In the message schema annotation step, an expert on each software application studies the RO and assigns

the appropriate RO semantics to each data element in the application interface, using the ASTAR tool. In addition,

an expert on the IV&I standard performed this process for the standard BOD schema.

The ASTAR annotation method consists of four phases: (1) the terminological semantic annotation (TSA),

(2) path semantic annotation (PSA), (3) the simple semantic annotation (SSA), and, (4) the full semantic annotation

(FSA) phase.

In the TSA phase we did translation between terms used in the application and terms used in the RO, by

identifying the RO concept whose definition most closely matched the intent of the message element as indicated by

its documentation (while the naming helps in finding these, it is not always a reliable indicator). The idea of the

PSA phase is to relate structural paths in the message RDF schemas to relationship paths through the semantic

network in the RO. The SSA phase deals with content mismatches, which are mostly about choices of

representation for information units, such as named values, time intervals, and addresses. The corresponding,

specialized, data transformations needed at run-time are denoted by attaching (usually pre-defined) abstract

operators to these semantic associations. The FSA phase generates an OWL DL ontology (Web Ontology

Language) for the semantic associations, and allows the user to note the actual relationship between the semantic

concepts: equivalence, subsumption in either direction, or just overlap.

Semantic annotation also reveals real semantic mismatches, called coverage mismatches. Such a mismatch

occurs when a concept in the application message has no match in the RO. The corresponding information will be

lost on outbound messages and missing from inbound messages. When that information is optional and seldom

used, it may not be a problem; but, when it is important to the application, it means that the standard is inadequate.

The reverse case, in which the RO has a concept not used in the application message, is usually harmless – the RO

may well support many different messages, only some of which use any given concept. But if it is a mandatory

property of a required object, the application may not be suitable for the use envisaged in the standard.

Table 1 shows some of the semantic relationships captured by annotations of the GM and Apolon schemas,

including the abstract operators (AO) for the content mismatches. A coverage mismatch was found, between the

GM schema and the RO. The GM schema has no equivalent for the KanbanStatus field. This is a critical field, but

the GM usage is to imply the status value by the type of the message itself. So the semantic link is between the

 10

message type and the KanbanStatus, and it was possible to overcome this mismatch with a special reconciliation

rule.

Table 1 Four-phases of ASTAR semantic annotation

Phase

App.

RDF Schema elements

Corresponding RO element

Identified
Mismatch

gmSyncShipmentSchedule ShipmentSchedule_BusinessObject
gmSyncShipmentSchedule_sender SenderParty_BusinessObject
gmSyncShipmentSchedule_sender_DUNS Id_BusinessObject
gmSyncShipmentSchedule_sender_PROP relTo_ SyncShipmentSchedule_Message_SenderParty
gmSyncShipmentSchedule_sender_DUNS_PROP relTo_ SyncShipmentSchedule_Message_SenderParty_PartyId
gmSyncShipmentSchedule_sender_DUNS_sValue has_Id_identifier

GM

(not defined) has_KanbanStatusCode coverge
ShipmentSchedule ShipmentSchedule_BusinessObject
forDocumentItem relTo_ScheduleLine_ScheduleLine_loopServed_KanbanLoop
DocumentItem KanbanLoop_BusinessObject
forKanban relTo_KanbanLoop_hasKanban_Kanban
Kanban Kanban_BusinessObject

T

SA

Apolon

kanbanStatus has_KanbanStatusCode

RDF Schema path

Corresponding RO path

PS

A

GM

gmSyncShipmentSchedule.
 gmSyncShipmentSchedule_sender_PROP.
 gmSyncShipmentSchedule_sender.
 gmSyncShipmentSchedule_sender_DUNS_PROP.
 gmSyncShipmentSchedule_sender_DUNS.
 gmSyncShipmentSchedule_sender_DUNS_ sValue :
STRING

ShipmentSchedule_BusinessObject.
 relTo_ShipmentSchedule_message_SyncShipmentSchedule.
 SyncShipmentSchedule_Message.
 relTo_ SyncShipmentSchedule_messageSender_SenderParty.
 SenderParty_BusinessObject.
 relTo_ SenderParty__partyIds_PartyId.
 PartyId_BusinessObject.
 has_Id_identified : STRING

 RDF Schema path

AO

Corresponding RO path

GM

gmSyncShipmentSchedule.
 gmSyncShipmentSchedule_sender_PROP.
 gmSyncShipmentSchedule_sender.
gmSyncShipmentSchedule_sender_DUNS_PROP.
 gmSyncShipmentSchedule_sender_DUNS.
 gmSyncShipmentSchedule_sender_DUNS_ sValue :
STRING

=

ShipmentSchedule_BusinessObject.
 relTo_ShipmentSchedule_message_SyncShipmentSchedule.
 SyncShipmentSchedule_Message.
 relTo_ SyncShipmentSchedule_messageSender_SenderParty.
 SenderParty_BusinessObject.
 relTo_ SenderParty__partyIds_PartyId.
 PartyId_BusinessObject.has_Id_identified : STRING

SS

A

Apolon

ShipmentSchedule.
forDocumentItem.
DocumentItem.
forKanban.
Kanban.kanbanStatus: STRING

ϕ

ShipmentSchedule_BusinessObject.
 relTo_ShipmentSchedule_ShipmentSchedule_lines_ScheduleLine.
 ScheduleLine_BusinessObject.
 relTo_ScheduleLine_ScheduleLine_loopServed_KanbanLoop.
 KanbanLoop_BusinessObject.
 relTo_KanbanLoop_hasKanban_Kanban.
 Kanban_BusinessObject.
 relTo_Kanban_Kanban_status_KanbanStatus.
 KanbanStatus_BusinessObject.
 has_KanbanStatusCode: ENUMERATION
 [authorized, empty, full, shipped]

content

RDF Schema path

Relation

OWL DL Expression

FS

A

GM

gmSyncShipmentSchedule.
 gmSyncShipmentSchedule_sender_PROP.
 gmSyncShipmentSchedule_sender.
 gmSyncShipmentSchedule_sender_DUNS_
 PROP.
 gmSyncShipmentSchedule_sender_DUNS.
 gmSyncShipmentSchedule_sender_DUNS_
 sValue : STRING

=

STRING
∩(
 ∃ inverseOf has_Id_identified.(PartyId_BusinessObject
 ∩(∃ inverseOf
relTo_SenderParty_partyIds_PartyId.(SenderParty_BusinessObject
 ∩(∃ inverseOf relTo_SyncShipmentSchedule_messageSender_SenderParty.
 (SyncShipmentSchedule_Message
 ∩(∃ inverseOf relTo_ShipmentSchedule_message_SyncShipmentSchedule.
 (ShipmentSchedule_BusinessObject))))))))

 11

Message Reconciliation Rules Specification

The message reconciliation rules specification was based on the semantic model defined in the RO and the semantic

annotations. The software application expert specifies the reconciliation rules – the instructions for copying and

converting data elements, using the ARGOS tool. The specification was performed semi-automatically, by selecting,

from a list provided by the tool, the appropriate rule templates and conversion functions for each semantic match.

The tool then created the declarative run-time rule by substituting the matching schema path and RO path into the

template.

The rule generation process is performed twice for each application interface: once to generate the forward

rules and once to generate the backward rules.

Table 2 shows examples of map, set value and map table rule templates. The GM sender-DUNS path was

reconciled with RO senderParty-ID_identified path using the map rule template, which simply copies the data value.

The set value rule was used to set the RO KanbanStatusCode value to the constant Authorized, overcoming the

coverage mismatch. The map table rule template was used to create the rules for reconciling the content mismatch.

 12

Table 2 Examples of defined reconciliation rules

GM RDF Schema path

RO path

Rule

gmSyncShipmentSchedule.
 gmSyncShipmentSchedule_sender_PROP.
 gmSyncShipmentSchedule_sender.
 gmSyncShipmentSchedule_sender_DUNS_
 PROP.
 gmSyncShipmentSchedule_sender_DUNS.
 gmSyncShipmentSchedule_sender_DUNS_
 sValue : STRING

ShipmentSchedule_BusinessObject.

relTo_ShipmentSchedule_message_SyncShipmentSchedule.
 SyncShipmentSchedule_Message.
 relTo_
SyncShipmentSchedule_messageSender_SenderParty.
 SenderParty_BusinessObject.
 relTo_ SenderParty__partyIds_PartyId.
 PartyId_BusinessObject.has_Id_identified : STRING

map

Fo
rw

ar
d

(not defined)

ShipmentSchedule_BusinessObject.
 relTo_ShipmentSchedule_ShipmentSchedule_lines_
 ScheduleLine.
 ScheduleLine_BusinessObject.
 relTo_ScheduleLine_ScheduleLine_loopServed_
 KanbanLoop.
 KanbanLoop_BusinessObject.
 relTo_KanbanLoop_hasKanban_Kanban.
 Kanban_BusinessObject.
 relTo_Kanban_Kanban_status_KanbanStatus.
 KanbanStatus_BusinessObject.has_KanbanStatusCode:
 ENUMERTION [authorized, empty, full, shipped]

set
value

RO path

Apolon RDF Schema path

B
ac

kw
ar

d

ShipmentSchedule_BusinessObject.
 relTo_ShipmentSchedule_ShipmentSchedule_
 lines_ScheduleLine.
 ScheduleLine_BusinessObject.
 relTo_ScheduleLine_ScheduleLine_loopServed_
 KanbanLoop.
 KanbanLoop_BusinessObject.
 relTo_KanbanLoop_hasKanban_Kanban.
 Kanban_BusinessObject.
 relTo_Kanban_Kanban_status_KanbanStatus.
 KanbanStatus_BusinessObject.
 has_KanbanStatusCode: ENUMERATION [authorized, empty,
full, shipped]

ShipmentSchedule.
 forDocumentItem.
 DocumentItem.

forKanban.
Kanban.
kanbanStatus: STRING

map
table

Run-Time

A Coordinator run-time engine converted messages, in both directions, from the proprietary to the standard IV&I

form and from the standard form to the proprietary form. Each message transformation involved two rulesets: for

the sending application, the forward ruleset for the application and the backward ruleset for the standard; and for the

receiving application the forward ruleset for the standard and the backward ruleset for the application. Each

application had its own appropriately configured Coordinator instance.

 Inside the Coordinator, several message transformations and reconciliations were necessary, as described

below, but these steps are virtually transparent to the software application developer – the application sends and

receives messages in its proprietary format. And the Coordinator provided the robust webservice interface needed

for supply-chain transactions that use the Internet – webservice addressing, reliability and security.

 13

 The XML2RDF service accepts the XML message and generates RDF-based version of message

corresponding to the RDF Schema produced by the XSD2RDFS transformation. This was needed for the GM

interface, and for the standard, but not for the Apolon interface.

 Next, the ARES rule execution engine is used to apply a forward and backward reconciliation rulesets.

Finally, where was needed, the RDF2XML tool converted the RDF version of the target message to its XML form –

a valid instance of the XML schema for the interface.

Pilot Evaluation

As a proof of concept, the validation pilot showed that it was possible to do the conversions between application-

specific messages and the IV&I standard messages using the semantic-mediation approach. The validation pilot

offered evidence that the ATHENA toolset provided adequate representational support for the selected data

exchange scenario.

The pilot also gave some insight into the complexity of the reconciliation problem for an intentionally

simple use case. Note that the mappings for the standard IV&I interface are publicly available; an application expert

need only be concerned about the mappings for his application.

Table 3 summarizes the statistics for the semantic matches between the RO and the three interface schemas

– the IV&I standard and the two proprietary interfaces – for the single SyncShipmentSchedule message. The

ASTAR tool provided computational support for finding lexical-terminological similarity among the names used,

but each of these annotations required an expert on the specific interface to identify the valid correspondences. An

expert is needed because the semantic correspondences depend on the meaning, not on the term used. All message

schemas concepts were annotated successfully.

 14

Table 3

Interface Schema GM Apolon eKanban BOD Total

Number of concepts 33 60 76 169

Concept matches established 48 60 76 184
Path matches established 12 27 29 68
Content mismatches identified 0 1 1 2
Coverage mismatches identified 1 0 9 10

Table 4 shows the number and types of reconciliation rules created for each interface schema. All identified

mismatches were successfully reconciled. The map template, which is used for one-to-one mappings between

matching elements with no data conversion, is used for 85% of the runtime reconciliation rules. And the remaining

15% are identified by the ASTAR annotations as special cases. Because the ARGOS tool is semi-automatic, the

human expert must select every rule used, but the instantiations of the map template could be done automatically,

reducing the time for this phase up to 85%.

Table 4

Interface Schema /
Reconciliation rule template

GM

Apolon

eKanban BOD

Total

Total

(%)
map 12 27 29 69 85%
map table 0 1 1 2 2%
set value 1 0 9 10 13%

Total

13

28

39

80

100%

While the basic functionality of the tools was shown to be appropriate, the semantic annotation and

reconciliation tasks proved to be challenging for the current toolset, and for the users of those tools. In particular, the

path-matching mechanism used in ASTAR was barely adequate and unnecessarily time-consuming.

 We therefore believe that the semantic-mediation approach has been validated, but significant rework of

the tooling is needed for industrial use.

 15

Future work

Three directions for future work may significantly advance the existing toolsets to support the methodology:

• Industrial message model. Develop and use a message platform-independent model that faithfully

represents the concepts in webservices and XML Schema, rather than an RDF Schema-based model. This

makes the design-time activities easier for the human expert and improves capabilities for the manipulation

of messages in run-time rules.

• Efficient annotation support. For path matching, do not generate any path through the RO a priori. In

general, allow the engineer to steer the path development rather than presenting him with a long list of

possible paths. Generate the full candidate path when it can be deduced unambiguously from the

terminological annotations.

• Automated reconciliation support. Use the semantic annotations to derive most reconciliation rules

automatically. Involve the application expert only in the special cases.

In addition, it is likely that these changes will eliminate problems encountered in handling realistically large

artifacts.

Conclusions

We described a proposed semantic-mediation architecture that was demonstrated (1) to be able to handle multiple

message formats from independent, heterogeneous applications and (2) to provide required transformations and

model-based reconciliations to result in interoperable message exchanges over the Internet.

The ATHENA-developed toolset, although in its prototype version, successfully enabled this architecture.

The toolset provided support for reference-ontology development, semantic-annotation capabilities with semi-

 16

automated assistance based on lexical similarities, and support for the definition of executable reconciliation rule

sets with semi-automated assistance based on the formally captured semantic annotation.

The proposed architecture may positively impact situations where new partners are frequently added to the

collaboration. A new tool provider may achieve significant reduction of time when specifying and implementing a

standard interface. The development of the reference ontology and the associated artifacts for the standard itself is a

one-time task for the standards community. Those are available to every new provider. So each new provider need

only do the mappings for his existing interfaces.

The new architecture has the potential to move standards development from a syntax-based approach to a

semantics-based approach, and from informal expressions of business intent to formal and machine-processable

ones. This architecture moves several implementation tasks associated with standards compliance to a model-based

approach and thereby from hard-coded, subjective and inconsistent implementations to clear, documented semi-

automated and consistent implementations. In addition, companies that are successful in using the advanced

technologies may significantly reduce time-to-market for conforming software products.

Disclaimer

Certain commercial software products are identified in this paper. These products were used only for demonstration

purposes. This use does not imply approval or endorsement by NIST, nor does it imply these products are

necessarily the best available for the purpose.

References

1 Inventory Visibility & Interoperability Oversight Committee, AIAG Web site, July 2007;

http://www.aiag.org/staticcontent/committees/index.cfm?committeeid=IVOS

2 L. Gould, “What's New In Automotive Supply Chains?,” Auto Field Guide, April 2007;

http://www.autofieldguide.com/articles/020407.html

3 D. Libes et al., “The AMIS Approach to Systems Integration,” NISTIR 7101, May 2004;

http://www.mel.nist.gov/msidlibrary/doc/nistir7101.pdf.

 17

4 ATHENA Integrated Project Web Site, www.athena-ip.org

5 M. Missikoff and F. Taglino, “D.A3.2 - Updated version of the Ontology Authoring and Management System with

semantic search functions,” Deliverable of the Athena project, February 2006; http://leks-pub.iasi.cnr.it/Athos

6 I. Miletic, M. Vujasinovic et al., “Enabling Semantic Mediation for Business Applications: XML-RDF, RDF-

XML, and XSD-RDFS Transformation,” Proc. Int’l Conf. Interoperability of Enterprise Software and Applications,

Springer-Verlag, 2007, pp. 483-494

7 M. Missikoff, et al, “D.A3.3 - Semantic Annotation language and tool for information and Business Processes,”

Deliverable of the Athena project, February 2006; http://leks-pub.iasi.cnr.it/Astar

8 E. Coscia, et al, “D.A3.4 - A system for reconciliation rules specification, storage and management,” Deliverable

of the Athena project, June 2006; https://services.txt.it

9 L. Pondrelli, et al, “D.A3.5 - A reconciliation and mediation engine, capable to efficiently process semantic

mediation and reconciliation rules,” Deliverable of the Athena project, September 2006

10 J. Vayssière et.al.,"Rapid Prototyping for Service-Oriented Architectures", 2nd Workshop on Web Services

Interoperability at IESA Conf., Bordeaux 22nd - 24th March, 2006; http://www.athena-

ip.org/dmdocuments/pu/Rapid_Prototyping_for_SOAs.pdf

11 I. Novicic et al., “A Case Study in Business Application Development Using Open Source and Semantic Web

Technologies,” Proc. Int’l Conf. Interoperability of Enterprise Software and Applications, Springer-Verlag, 2007,

pp. 721-724.

12 E. Barkmeyer and B. Kulvatunyou, “An Ontology for the e-Kanban Business Process”, NISTIR 7404, June 2007,

http://www.mel.nist.gov/msidlibrary/doc/NISTIR_7404.pdf

 18

