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Abstract

As the amount of biological research literature increases, finding information is becoming a
daunting task. Since machine learning techniques could alleviate this problem, we propose a ma-
chine learning framework to identify protein-protein interaction sentences from research papers.
This machine learning technique is one of the basic components needed to automatically extract
biological information from texts. Since the protein-protein interaction (PPI) sentences have their
own patterns at article and sentence levels, these patterns are mined by using boosting and kernel
methods. Both approaches have good characteristics for the PPI extraction tasks, and naturally
can handle heuristic information for future extensions.

Keywords: Protein-Protein Interaction Identification, Boosting Methods, Tree Kernels, Support
Vector Machines

1 Introduction

The growing accumulation of functional descriptions in biomedical literature necessitate the impor-
tance of text mining tools to facilitate the extraction of such information [1]. Therefore, diverse
approaches such as pattern matching, statistical learning, and natural language processing have been
proposed. Here, we present a machine learning-based framework, in particular, without any prior
knowledge other than training data. In biological text mining, only a small amount of annotated
documents are available for public use, which limits the usage of machine learning techniques. Never-
theless, it is important to examine the ability of machine learning methods to determine the possibility
for real-world use, because the heuristic approaches (with or without learning) might be ineffective in
the long term.

The goal of the BioCreative project is to evaluate text mining and information extraction systems
applied to the biological domain [1]. We participated in two subtasks of the Protein-Protein Interaction
(PPI) task in the BioCreative II competition. The subtasks of PPI of interest to us are the Protein
Interaction Article (IAS) subtask and the Protein Interaction Sentence (ISS) subtask. The IAS subtask
is the classification of whether a given article contains protein interaction information. It is the
first step to extract the PPI information, by selecting those articles which have relevant information
related to protein interactions. The IAS system should return a ranked list of PPI articles based
on their relevance in the task. Before getting protein interaction pairs, it is useful to select the most
relevant sentences which are directly connected to the protein interactions. The ISS subtask is to filter
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Figure 1: Overview of the PPI extraction system for BioCreative II. Dotted line is not implemented
and not used for the BioCreative tasks as the committee provides two separate training sets.

those PPI relevant sentences. The ISS system is required to submit a ranked list of HTML passages
describing protein-protein interactions.

For the IAS subtask, the AdaCost [5], a cost-sensitive learning algorithm, is used to give bias
towards PPI relevant documents. Since we use naive Bayes classifiers as weak learners in the AdaCost
framework, any prior knowledge can be naturally adapted in probabilistic form. For the ISS subtask,
a tree kernel method [4] is utilized to mine the PPI patterns among sentences, which is based on the
assumption that the PPI information tends to be written in specific grammatical structure [6]. It also
can employ additional heuristic knowledge in an easy way.

The paper is organized as follows: In Section 2, the proposed PPI extraction approaches are
described and analyzed. Concluding remarks and future research are provided in Section 3.

2 Methods and Analysis

The proposed PPI extraction system consists of two parts: 1) article-level and 2) sentence-level filters.
These filters are for the IAS subtask and the ISS subtask, respectively. Figure 1 shows the overview of
the two-phase PPI extraction. Free texts enter the article-level filter at first, which identifies the PPI
relevant articles using the AdaCost classifier. After the PPI articles are classified, the PPI information
is picked up at the sentence level. The second phase uses support vector machines (SVMs) with tree
kernels. Although the article-level and the sentence-level filters are combined together as a complete
PPI extraction system, the two phases are separately performed for the BioCreative tasks, and each
produces its own result according to the participating subtasks.

2.1 PPI Article Filtering by Cost-Sensitive Learning

The IAS subtask is the first step to extract the PPI information at article level, so that the actual
extractor (ISS system) can use less-noisy data. At this point, the filtering system should not miss
any PPI relevant document even though a certain amount of irrelevant documents are included in the
filtered set, i.e., recall is more important than precision. To handle the tradeoff between recall and
precision, our system utilizes a cost-sensitive learning algorithm, AdaCost [5]. Unlike other machine
learning classifiers, which focus on minimizing the number of incorrect predictions, AdaCost provides
the flexibility between precision and recall rates by using a cost factor. It is similar to AdaBoost [8],
but the main difference is how the data distribution is updated. AdaCost has an additional parameter,
so-called “cost” in updating the data distribution. The weight of an instance with high cost will be
changed greater than the weight of an instance with low cost. This allows the learning system to
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Figure 2: Recall and F-score changes for cost on unbalanced dataset.

classify high-cost instances more correctly. We use naive Bayes learning as weak learner which is
known to be efficient in text filtering [7]. In addition, the naive Bayes classifier is suitable for our
purpose of participating in the BioCreative II, which is to build a machine learning framework that can
be further used to adapt heuristic knowledge in easy ways. The naive Bayes classifier is a statistical
learning method that can naturally use the heuristic knowledge only if it can be transformed into
probabilities. The modified AdaCost with naive Bayes algorithm used for the article-level filtering is
as follows (our modification is shown in bold letters):

• Given training examples S = {(x1, c1, y1), . . . , (xm, cm, ym)};
xi is instance (xi ∈ X), ci is cost factor (ci ∈ R+), and yi is label (yi ∈ {−1, +1}).

• Initialize D1(i) (such as D1(i) = ci/
∑m

j cj).
• For t = 1, . . . , T :

1. Train a naive Bayes classifier using distribution Dt.
2. Compute weak hypothesis ht : X → R.
3. Choose αt ∈ R and β(i) ∈ R+,

where αt is a weight parameter for weak hypothesis ht at the t-th round, and β(i) =
β (sign(yiht(xi)), ci) is a cost-adjustment function.

4. Update Dt+1(i) = Dt(i)exp(−αtyiht(xi)β(i))
Zt

, where Zt is a normalization factor.

• Output the final hypothesis:
H(x) = sign(f(x)) where f(x) =

(∑T
t=1 αtht(x)

)

The training data used in the IAS subtask contains 3,536 positive examples and 1,959 negative
examples. The noisy positive examples given by the committee are excluded from the experiments.
For the AdaCost classifier, the documents are preprocessed by stemming and stopword removal [7].
We use a modified stopword list, where the PPI-related words are omitted from common stopwords.
Then the remaining texts are converted to the bag-of-words representation because we presume that
some specific words or the simple combination of the words are enough to evaluate the PPI relevance
of the articles.

Figure 2 presents recall and F-score changes for the cost ci on training data. The overall best
performance occurs at 0.4 cost, whereas the highest recall is achieved at 0.9 cost. The unusual peak
of 0.4 cost is caused by the unbalanced number of positive and negative examples and relatively small
size of dataset. In the article-level filtering, the recall is more important unless the F-score drops
drastically, hence higher cost is preferred. However, for the official run of the IAS subtask, the cost
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was set to 0.5 since it is an independent subtask from other PPI subtasks, and only evaluated by
the IAS system output. Our IAS system got 65.73% of accuracy and 71.54% of F-score on test data.
We found out that there is a different PPI-related vocabulary between training examples and test
examples, which bears the performance decrease on test data. This problem can be solved by using
PPI-related dictionaries or databases, which remains as future research.

2.2 PPI Sentence Filtering by Tree Kernels

The ISS subtask consists of two steps: choosing relevant sentences and finding UniProt IDs of interact-
ing protein pair. For the first step, we assume the PPI sentences can be discriminated by investigating
their grammatical structures, since most of PPI sentences tend to have unique grammatical struc-
tures [6]. A parsing tree in natural language processing represents a set of words and its structural
information. The convolution kernel was chosen to calculate structural similarity among parsing trees
[4].

In the convolution tree kernel (Φ) algorithm, kernel value is evaluated by summing up the number
of common subtrees between two trees to calculate the structural similarity. A tree is represented as
a vector of subtrees through high dimensional feature mapping [4]:

Φ(Tree T ) = (subTree(type 1), . . . , subT tree(type n)),

where subTree(type n) is the number of subtree of node type n. Then, the kernel function is defined
as follows:

K(T1, T2) = 〈Φ(T1) · Φ(T2)〉 =
∑

l

Φ(T1)[i]× Φ(T2)[i] =
∑

n1∈N1

∑

n2∈N2

∑

i

Ii(n1)× Ii(n2),

where N1 and N2 represent the set of all possible nodes of trees T1 and T2, and Ii(n) is an indicator
function which has 1 if sub-tree of type i starts from root node n, 0 otherwise.

The number of subtrees with type i in tree T is calculated by Φ(T )[i] =
∑

n∈N Ii(n), which gives
the total number of nodes in tree T which have subtrees with type i. The inner product between two
trees, having its features as the all possible subtrees, is computed by the following recursive way and
it is known to be calculated in polynomial time.

• If the form of the child nodes of n1 and n2 are different, NCS(n1, n2) = 0,
where NCS(n1, n2) is the number of common subtree between n1 and n2.

• If the form of the child nodes of n1 and n2 are identical (including their order) and they are leaf
nodes, NCS(n1, n2) = λ.

• For all other cases, NCS(n1, n2) =
∏

j (1 + NCS(ch(n1)j , ch(n2)j)),
where ch(n1)j is the j-th child of node n1, ch(n2)j is the j-th child of node n2, and NCS(ch(n1)j ,
ch(n2)j) = λ

∑
i Ii(n1)× Ii(n2). The parameter λ, 0 < λ ≤ 1, is used to consider the relative

importance of tree fragment according to its length and is set to ‘1’ when the size of tree fragments
is not considered.

To achieve the parsing tree of the sentence, we use the following procedure. First, we extract plain
texts by removing HTML tags in HTML documents to use the grammatical structure information.
Second, the extracted sentences are tagged by a rule-based part-of-speech tagger [2]. The Brill tagger
is trained beforehand, using GENIA corpus (available at http://www-tsujii.is.s.u-tokyo.ac.jp/
~genia/topics/Corpus). Third, the tagged sentences are parsed by a statistical natural language
parser [3]. Then, the irrelevant parsing trees such as a noun phrase are discarded, since they do
not contain the meaningful grammatical structure. This leads to some positive examples that only
have noun phrases be excluded from training data. After calculating the kernel tree, the interaction
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Figure 3: Precision, recall and F-score changes
for training data sets.
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Figure 4: The effect of λ in tree kernel calculated
with balanced dataset.

patterns are learned by support vector machines (SVM). We use the LIBSVM package (available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm) which can handle pre-computed kernel matrices.

Training data for the ISS subtask consists of 1,634 positive sentences and 1,763 negative sentences.
We try to balance the positive and negative examples to improve the quality because the excessive
negative examples in the original dataset force the SVM classifier to turn all test sentences into negative
examples. We incorporate the Anne-Lise-Veuthey corpus and the PRODISEN Interaction corpus to
enrich the positive examples, which are also released by the committee for the ISS subtask. For the
official run, we use about 10% more negative examples than positive ones, so that we give a slight
bias to non-relevant PPIs, and can get reduced computational time. Note that only a few sentences
are available as positive examples at sentence-level filtering out of whole texts.

Figure 3 shows the performance changes for 4 different training data sets. The results were obtained
from 10-fold cross-validation. The “Original” means the first standard dataset provided by the ISS
subtask. The “Additional Data” is created by adding the corpus, Anne-Lise-Veuthey and PRODISEN
Interaction, and the second standard dataset to the “Original.” The “Weights on Positive” gives more
weight to positive examples in the “Additional Data.” The “Balanced” is the balanced dataset, where
the number of negative examples is only 10% more than that of positive examples. The balanced
dataset gains the best performance, and it shows the importance of making balances between positive
and negative examples. The effect of λ in the tree kernels was also examined. Figure 4 shows the
experimental results. Since sentence lengths are very diverse, λ should be carefully chosen. The best
performance is taken when λ is 0.01, and we got 94.30% precision, 93.15% recall, and 93.72% F-score
on the balanced training data. According to the preliminary results, we found that the tree kernel
provides good predictions if the corpus is limited to certain conditions for both training and test data.

In the submitted run of the ISS subtask, we used the reduced sentences which removed the words
tagged by less important elements such as articles, adverbs, and adjectives to save computational time.
However, the follow-up experiments showed that using original sentences provides better performance
for all criteria. Because the answers for the ISS test data have not been published yet, we could not
analyze the proposed method and its variants further.

Even though we concentrated on the HTML sentence extraction, we also implemented the protein
ID extraction module using a simple word-to-word matching approach to find protein IDs from the
selected PPI sentences. A UniProt ID dictionary is built with gene names, aliases, orf names, and
protein descriptions. Simple morphological variations for each protein term are considered to increase
the coverage in the searching process. We also consider compound words by using bi-gram and tri-
gram of a sentence. Finally, the nearest two UniProt IDs found in a sentence are selected as a system
result.
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3 Summary

We presented a machine learning approach to extract protein-protein interactions. This method con-
sists of two procedures: article-level filtering and sentence-level filtering. In the article-level filtering,
documents are roughly classified to reduce the overhead in the second procedure. The AdaCost with
naive Bayes classifiers is used for the article-level filtering, and the SVM classifier with tree kernels is
used to identify PPI relevant sentences as sentence-level filtering.

Our focus is to develop a machine learning-based framework, which can be further enhanced by
adding heuristic techniques because it extends the system performance particularly in the biomedical
domain. In the present work, we did not apply any heuristic approaches such as protein/interaction
word dictionaries. Previous research indicates that the dictionary method could increase the PPI
extraction performance when the training data size is limited. Thus, study on exploring efficient
heuristic approaches remains as a future research work.
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