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Product Supply Chain



Dimensions of Product Life Cycle



Traditional View of Product Data
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Sustainable Manufacturing

Sustainable manufacturing is a systems approach 
for the creation and distribution (supply chain) of 
innovative products and services, that:
• minimizes resources (inputs such as materials,   

energy, water, and land), 
• eliminates toxic substances, and 
• produces zero waste that in effect reduces 

green house gases, e.g., carbon intensity,  
across the entire lifecycle of products and 
services. 



NIST/MEL/MSID Efforts: Support of 
Sustainable Manufacturing

Sustainable manufacturing: 

requires the development of new infrastructure to support information 
models, standards, metrics, tools,  and interoperability among tools. 

NIST’s challenge:

develop requirements, formal models, and validation methods for 
lifecycle information-based manufacturing and sustainability that 
supports interoperability among tools and standards for design, 
analysis, simulation, and lifecycle assessment and information 
management. 



SLIM: Program Objectives

1. Identify standards requirements for key application 
areas of sustainable manufacturing

2. Provide formal models of product and process 
information

3. Develop validation, simulation, and testing 
methodologies for information models
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Challenge #1: 
STEP standards have fallen behind OMG and W3C standards

STEP models

Problems addressed:
• New STEP capabilities to address evolving needs
• Integration/Harmonization of STEP with OMG and W3C 

standards
• Upward migration of STEP data models



•SC4 has 25 years experience producing data exchange 
standards


 

Production implementations in US industry have 
resulted in actual savings of $150M per year 


 

STEP information models are of the high fidelity, high 
quality needed by US industry

•Yet …


 
STEP focus on data means its standards do not 
address other viewpoints that have become key to 
business process reengineering and systems 
integration over the past several years


 

EXPRESS implementations work because people make 
them work, not because of consistent IT architecture

ISO TC184/SC4 STEP



•To enable enterprise integration based on inter-related 
data exchange, ontology and service specifications

•To enable the selective harvesting of ISO STEP 
standards into ontologies and other widespread 
modeling languages via OMG Model Driven 
Architecture™ approach


 

Leverage STEP community knowledge, lessons 
learned and capability regarding data exchange


 

Possibly harvest improvements made in OMG and 
W3C back into ISO STEP standards


 

Possibly lead ISO STEP to adopt OMG/W3C 
technology

FutureSTEP Project Goals
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Challenge #2: 
Standardization of product & process models requires formal models

Product/process models

Problems addressed:
• Extension and integration of formal representations
• Creation of new conformance classes and metrics for 

precise definition of interoperability



Knowledge Representation

Form Function

Behavior

Relationships Information

Geometry

Material

A product  is represented  by a hierarchy of  entities of the class Artifact, which is 
an aggregation of Function, Form and Behavior. Function represents what the 
artifact is supposed to do; Form represents the proposed design solution for the 
design problem specified by the Function; and Behavior represents the evaluation 
of how the artifact implements its function.



Core Product Model
• Objective: base-level product model that is: 


 

generic


 
extensible


 

independent of any one product development process


 
capable of capturing full engineering context 

• Key feature: explicit representation of 

Function – Form - Behavior

(in contrast to STEP AP 203 that essentially represents only 
form )



Product Representation: Summary
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SPML framework and its example

• 20 classes and their relationships.
• Environmental Object and its interactions to 

Artifact are considered.
• Requirement are specified further and defined 

as Behavioral Requirement and Required Form. 
• Behavior of Feature is considered.

Modeling
Language
(M2)

Model
(M1)

Individuals
(M0)

OWL – Ontology modeling language

Product-specific ontological models

Physical item information
(Measured Information)

Specializatio 
n
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Meta-Modeling
Language
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MOF (Meta-object facility)

Instantiation
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SPML - Product modeling language

Artifact Geometry
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Why Process Models?

•Object models already well developed (UML).

•Efforts underway to formalize object models (OWL).

•Much less rigor in specifying how objects change over time 
(process) and the resources required for these 
transformations.

•Highly fragmented standards (BPEL, XPDL, UML, BPMN, 
ebXML, vendor-specific, etc).



Process Modeling Work in DPG
•Syntactic


 

What the engineer sees on the screen or interchange 
formats.


 

SysML / UML / BPMN


 
Lockheed, Raytheon, IBM, Georgia Tech, SAP, Oracle.

•Semantic


 
What the engineer expects to happen in reality 
according to the model above.


 

Mathematical / formal process modeling (Process 
Specification Language, PSL).


 

SAP, Boeing, U Toronto, SJSU.
•Syntactic-Semantic


 

Combines the two above.


 
Semi-formal process modeling (BPDM, Executable 
SysML / UML)


 

MEGA, Axway, GSA, Lockheed, IBM, SAP



BPMN 2

• Different syntax, compatible semantics
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Challenge #3: 
Many standards have evolved independently

Problems addressed:
• Need for merged/unified/harmonized standards
• Gaps and overlaps between standards

Standards



Sustainability standards landscape

The specific aims of this work are as follows: 
Create a comprehensive understanding of all applicable standards (direct and indirect) in sustainability.
A one stop place with overview, analysis, details and links for further understanding for standards for sustainability – for 

researchers.
Help identify which are the applicable standards and how to implement them- for company managers.
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Challenges #4: 
Long-term data retention

Problems addressed:
• Infrastructure for long-term data/knowledge retention
• A classification system for long term preservation of 

engineering information to serve as the basis for evaluating the 
quality of archiving practices. 



NIST April 2007 Workshop Conclusions
• Facilities for archiving should be available at the source of information 

creation
• Archival systems must deliver the right information for the task at hand to 

the end user
• Archival system design is a socio-technical problem

Unique Archival Challenges of Engineering
•Capturing all aspects of a design project
•Preserving data generated by a variety of software tools
•Predicting how data will be used over long term
•Providing package schemas tailored to CAD preservation 
•Standards helpful but not a silver bullet

Source: Kopena, Shaffer and Regli: “CAD Archives Based on OAIS,” Proceedings of ASME Computers 
and Information in Engineering Conference, DETC2006-99675, 2006 
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Challenges #5: 
Sustainable manufacturing indicators and information models

Problems addressed:
• Information models, standards and support tools for 

sustainable manufacturing
• Testbed for standards and methods for sustainable 

manufacturing



29

Dimensions of Sustainability

Developing a Measurement Infrastructure for Sustainable Manufacturing

Sustainability
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 An indicator is a measured value that provides information 
about or describes the state of a phenomenon, with 
significance on sustainability.

(OECD Report on Sustainable Manufacturing and Eco-innovation, 2009)

 Characteristics of an effective indicator are:
• Measurable
• Relevant
• Easy to understand
• Reliable
• Data accessible[1]

[1] http://sustainablemeasures.com

30

Sustainable Indicator

Developing a Measurement Infrastructure for Sustainable Manufacturing
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Organization & Indicators/Metrics

http://repositories.cdlib.org/lma/gmg/reich‐weiser_08_4(UC‐Berkeley)

Supply Chain Level

Company/Enterprise Level

Factory Level

Production/Assembly 

 
Line Level

Work Cell Level

Machine Level

Operation/Process Level

Indicator
Aggregation
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Sustainability Measurement

Developing a Measurement Infrastructure for Sustainable Manufacturing



 
Measurement Process:
A sequence of operations, with the necessary instruments and 
tools, having the object of determining a value of an indicator.

• Measurement operation sequence has to be logical and traceable.
• Instruments must be certified and calibrated.
• Possible sources and magnitude of measurement errors must be 

expressed.
• Expression of measurement uncertainty needs to confirm to the ISO 

standards.
• The purpose is for internal decision making and external accountability 

reporting.



DESIGN ORGANIZATION

Semantic-based 
Lifecycle 

Information 
Product Model















RECYCLING
/DISPOSAL

IDEATION

CONCEPTUAL DESIGN

DETAILED DESIGN

DESIGN EVALUATION

PRODUCT USE

MANUFACTURING

Challenges #6: 
Simulation of Manufacturing Enterprises

Problems addressed:
• Extensions to simulation data models to support 

sustainability
• Simulations for manufacturing plants to study 

environmental impacts



Simulation and analysis (S&A) technologies are an 
essential ingredient for success of sustainable 
manufacturing through their ability to predict the effect 
of implementing certain facility, process and product 
actions.

The S&A applications require the  exchange of 
information with a variety of sustainable manufacturing 
tools and databases & provides models and methods 
to tailor algorithms for performing accurate 
transformations of the data.

Simulation for Sustainability 
.. Impact area



The principal objective of the project is to extend current 
discrete-event simulation concepts and tools to 
incorporate attributes and metrics for the simulation of 
various sustainability aspects in manufacturing 
enterprises. 

A secondary objective is to demonstrate the simulation 
of representative aspects of sustainability in 
manufacturing enterprises.

Simulation for Sustainability 
.. Objectives



Modeling and
Simulation
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Simulation for Sustainable Manufacturing 
.. Project structure



Implementation Approach
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39Developing a Measurement Infrastructure for Sustainable Manufacturing

Foundation
• Adv. Mathematical Theories
• Design & Planning Logic Theorems
• Novel Engineering Principles 
• Semantic Web Ontologies
• Modeling Languages

Information Models
• Product & Process Models
• Sustainable Indicators & Metrics
• Sustainability measurement guidelines

Decision‐making Tools
• Sustainability Analysis Software
• Sustainable Mfg Simulation Tools
• LCA & Carbon Weight Reporting Tool 

Testbed/Validation
• Test Cases & Methods
• Test Scenarios & Reporting 

Dissemination
• Standard Landscape

• Sustainable Indicator Bank
• Sustainability Performance Measurement Guidelines

Industry

Examples:
CPM/ OAM/ SPML/PSL/ BPMN 

 
Disassembly Information Model
Sustainability Metrics
Measurement Guidelines
Lifecycle  Carbon Weight Model

Sustainable and Lifecycle Information- 
based Manufacturing (SLIM) Program

Collaborations
(Academia, SDOs,
Other Agencies)



Toward Sustainable Lifecycle 
Information Management

Requirements 
defn.

Ideation Design Manufacture Market Maintain/

 
Dispose/R

 
ecycle

PDM

CAD

The wide scale adoption of SLIM requires an efficient product information model that allows:

 Capturing the wide range of SLIM data

 Easy and quick information exchange between actors of the various SLIM phases

 Seamless interoperation between environments and applications

SLIM

PLM



Other SM Work at NIST

• MEP’s Green Supplier Network a collaboration with 
EPA, DOE and industry

• EEEL’s infrastructure for the integration of electronic 
design  and manufacturing project

• MSEL’s materials sustainability for the global economy

• BFRL’s net-zero energy, high-performance green 
buildings

• CSTL/Physics’s Greenhouse Gas Measurements and 
Climate Research Program

•



Life Cycle Thinking

Business Case
for Sustainability

Corporate Environmental
and Social Responsibility

Data, Information and 
Models

Tools and Techniques Systems and Procedures
• Communication
• Stakeholder Engagement/ Product Panel
• Eco-labelling
• Certifi cation
• Sustainable Procurement
• (Product-Oriented) Environmental Management
Systems
• Design for Sustainability
• Dematerialisation
• Environmental Impact Assessment

• Life Cycle Assessment (LCA)
• Life Cycle Costing (LCC)
• Cost Benefi t Analysis (CBA)
• Material and Substance Flow Analysis (MFA/ SFA)
• Input-Output Analysis (IOA)
• Material Input Per Unit of Service (MIPS)
• Cumulative Energy Requirements Analysis (CEPA)
• Cleaner Production Assessment (CPA)
• Risk Assessment (RA)
• Audits

• Databases
• Best Practice, e.g.
- Benchmarks,
- Standards
- Weighting Schemes
• Models, e.g.
- Dose-Response
- Fate and Exposure
- Scenario

• Extended Producer Responsibility
• Extended Consumer Responsibility

• Automotive, Aerospace
• Large/ Small Manufacturing  Industries
• etc

Continue and expand life-cycle thinking into 
environmental performance goals 
• Upstream (e.g., suppliers, procurement)
• Downstream (customers, EOL service providers)

Life Cycle 
Management

Life Cycle Management: Connecting 
Various Operational Concepts and Tools



Enhanced Growth of Green Jobs and 
Manufacturing for a Green, Low Carbon 

Economy
• New markets and jobs for green products made in U.S., made possible 

by innovations enabled by a well-developed measurement and 
standards infrastructure

• Increased U.S. green product exports by meeting challenges created 
by stringent foreign environmental regulations

• Reduced dependence on foreign energy through increased renewable 
energy production and more energy efficient green products and 
processes

• Reduced environmental impacts through new renewable materials and 
green processing methods, and better risk management of materials

43
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Simulation: Staff and Collaborators
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