
ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 1

ASC X12

- WORKING DRAFT -

ASC X12

X12.7
Context Inspired
Component Architecture
(CICA)

Technical Specification
AND XML Syntax
Representation

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 2

ASC X12

- WORKING DRAFT -

Copyright © 2003 Data Interchange Standards Association

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 3

ASC X12

- WORKING DRAFT -

 TABLE OF CONTENTS

1 Purpose and Scope ... 5

2 Reference related Standards .. 5

3 Definitions and Concepts ... 6
3.1 Basic Structure .. 6
3.2 BNF Notation ... 6

3.2.1 Syntactic Entities ... 6
3.2.2 Defined Constructs.. 7
3.2.3 Other Inclusions .. 7
3.2.4 Alternative Definitions.. 7
3.2.5 Predefined Labels ... 7
3.2.6 Optional Items ... 7
3.2.7 Multiple Occurrences .. 7
3.2.8 Minimums/Maximums ... 7
3.2.9 Order of Resolution ... 7

3.3 Other Syntax Notation ... 8
3.4 Order of Precedence ... 8
3.5 Terminology... 8

4 Syntax Neutral CICA Representation ... 9
4.1 Primitives ... 9

4.1.1 Primitive Restrictive Properties ... 11
4.1.2 Superclass properties ... 18
4.1.3 Subclass properties... 19

4.2 Components .. 20
4.2.1 Superclass properties ... 21
4.2.2 Subclass properties... 22

4.3 Blocks .. 23
4.3.1 Superclass properties ... 24
4.3.2 Subclass properties... 25

4.4 Assemblies .. 26
4.4.1 Superclass properties ... 27
4.4.2 Subclass properties... 28

4.5 Templates.. 29
4.5.1 Superclass Properties ... 30

4.6 Modules ... 31
4.6.1 Module Properties ... 31

4.7 Documents .. 32
4.7.1 Subclass Properties .. 33

4.8 Common Symbols ... 34
4.8.1 requirements_flag ... 34
4.8.2 min_occurs.. 34
4.8.3 max_occurs... 34
4.8.4 content_restriction_flag ... 34
4.8.5 entity_type_flag ... 35
4.8.6 identification_characteristic_flag ... 35
4.8.7 abstract_requirements_flag... 36
4.8.8 abstract_repeatability_flag .. 36
4.8.9 slot_detail_flag .. 36
4.8.10context_category... 36
4.8.11context_category_identification_scheme_name ... 37
4.8.12context_category_identifier_value... 37
4.8.13detail_repeat.. 38

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 4

ASC X12

- WORKING DRAFT -

4.9 Symbols from Other Sources .. 38
4.10 Naming Conventions.. 38

4.10.1 Item and Usage Names .. 38
4.10.2XML Names .. 38
4.10.3Generic versus Specific Usage Names .. 39

5 W3C XML Schema Language Schema CICA Representation 40
5.1 Overall Structure.. 40
5.2 Document .. 41
5.3 Module ... 43
5.4 Assembly ... 43
5.5 Block .. 44
5.6 Component .. 45
5.7 Primitives ... 46

5.7.1 Primitive Example ... 48
5.8 Content Restriction .. 49

5.8.1 Exclusive OR... 50
5.8.2 Inclusive OR.. 51

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 5

ASC X12

- WORKING DRAFT -

X12.7 XML SYNTAX

1 Purpose and Scope
The Context Inspired Component Architecture (CICA) offers a method for building electronic business
messages using XML. This document provides the guidelines for representing the CICA in (XSD)
XML Schema as defined by the W3C XML Schema 1.0.

This document uses as its basis the philosophical foundation and general design principles forwarded
in the published technical report, ASC X12 Reference Model for XML Design and its description of the
Context Inspired Component Architecture (CICA).

2 Reference related Standards
This standard is used with the ASC X12 family of standards on electronic data interchange and
associated standards by other bodies

Standard or
Specification

Document Type Version Responsible Organization

Extensible Markup
Language (XML)

W3C
Recommendation

1.0 (Second
Edition)

World Wide Web Consortium

XML Schema Part 1:
Structures

W3C
Recommendation

2 May 2001 World Wide Web Consortium

XML Schema Part 2:
Datatypes

W3C
Recommendation

2 May 2001 World Wide Web Consortium

ASC X12 Reference
Model for XML Design

Technical Report
Type II

October 2002 ANSI ASC X12

ebXML Core
Components
Technical Specification
Part 8 of the ebXML
Framework

UN/CEFACT
Specification

15 November
2003
Version 2.01

United Nations Centre for Trade
Facilitation and Electronic Business

RFC 2119 : Key words
for use in RFCs to
Indicate Requirement
Levels

Request for
Comment; Category
Best Current
Practice

March 1997 Internet Engineering Task Force of
the Internet Society

Table 1 - Related Standards

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 6

ASC X12

- WORKING DRAFT -

3 Definitions and Concepts

3.1 Basic Structure
The Context Inspired Component Architecture presents seven levels of semantic granularity,
from the entire document at the top, down to Primitives that contain one discrete piece of data.
The CICA architecture is summarized in Table 2. The dividing line in the table below separates
the context independent entities above from the context dependent entities below.

Layer Definition

Primitive One discrete piece of data within a Component

Component Finest level of detail that indicates the identity or characteristics of business
data to describe parties, resources, events, or locations in a document

Block Specifies single parties, resources, events, or locations, composed of
combinations of identity and characteristics Components

Assembly Links sets of blocks into coherent collections of data that businesses can
reuse as needed

Template The framework of the document with slots or placeholders for Modules in
the message

____________ __
Module Adds business context, such as special industry terminology or business

process requirements or legal constraints, with the neutral data in the
Assembly or Block into meaningful pieces of information to the business
partners.

Document Complete processable message containing data combined with the
business context needed by business partners

Table 2 - Basic Structure

3.2 BNF Notation
This standard uses Backus-Naur Form (BNF) notation to clearly and unambiguously define
CICA. BNF is described in this section, and used for the following two purposes in the
standard:

• To express the logical composition of a construct that contains one or more other
constructs

• To describe a document fragment that represents an instance of the construct in a data
stream.

3.2.1 Syntactic Entities
Alphanumeric strings that are set in bold font denote syntactic entities, or
nonterminal symbols. The underscore (_) character may be used in this
representation to separate words. For example:

document
module

template
assembly
block

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 7

ASC X12

- WORKING DRAFT -

component
primitive

3.2.2 Defined Constructs
The defined construct is on the left side of a statement (a production) and is
separated from the defining right side by two colons and an equal sign (::=). For
example:

construct_one ::= construct_two

3.2.3 Other Inclusions
In the statements, spaces between syntactic entities are not significant and may be
included for clarity. Meaningful spaces may be included in the statements by
enclosing them in quotation marks. Other symbols may be included in quotation
marks for clarity. The right side of the statement may be continued onto lower lines
and be divided between syntactical entities. Ellipses (…) are used to represent
missing items when a logical progression has been established.

3.2.4 Alternative Definitions
When alternative definitions exist, they may be shown separated by a vertical bar (|).
This is the equivalent of a logical "OR". For example:

letter_or_digit ::= uppercase_letter | digit

3.2.5 Predefined Labels
Certain character strings such as predefined labels, literal markup, or punctuation are
to be used as given. For clarity they are presented in RED. For example:

if_statement ::= if boolean_expression then

 statement_sequence end if

3.2.6 Optional Items
Square brackets enclose optional items. For example:

if_statement ::= If boolean_expression then

 statement_sequence [else statement_sequence] end if

3.2.7 Multiple Occurrences
Braces enclose an item which may appear zero or more times. For example:

unsigned_integer ::= digit { digit }

3.2.8 Minimums/Maximums
The minimum and maximum number of characters that may be used for a syntactic
entity is specified by the inclusion of two numbers in parentheses appended to the
end of the syntactic construct as (minimum/maximum). The following example is
used to represent the X12 EDI data element in the data element dictionary.

id (02/03) ::= letter_or_digit letter_or_digit

 [letter_or_digit]

3.2.9 Order of Resolution
When necessary parenthesis () shall be used to specific or clarify the order of
resolution. For example:

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 8

ASC X12

- WORKING DRAFT -

id (02/03) ::= (letter | digit) (letter | digit) [letter
| digit]

3.3 Other Syntax Notation
When expressing the properties of an entity, as opposed to its grammatical composition in
BNF, the n-tuple notation is used as follows:

entity = (property-1 , property-2 , …, property-n)

Where a property may have values represented by an exclusive choice of two or more entities,
it may be represented within the n-tuple by another set of parentheses enclosing the choices,
each of which is separated by the vertical bar (|).

entity = (property-1 , (property-2a | property-2b), …, property-n)

In addition, conventional set notation may be used when it is appropriate in one context to
refer to the set as a whole, yet in another context to enumerate the members of the set.

set = { element-1 , element-2 , …, element-n }

NOTE
There is only one set of symbols used in this document. When the same symbol is used in
different notations, it represents the same entity. For example, when module_XML_name
appears in n-tuple property list, it is the same entity as when it is used in the BNF production
for the schema fragment.

3.4 Order of Precedence
If there is any conflict between the notational representation of an entity or a concept and the
text description, the notational representation takes precedence.

3.5 Terminology
The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD
NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be
interpreted as described in [RFC2119] as quoted here:

NOTE
The force of these words is modified by the requirement level of the document in which they
are used.

1. MUST
This word, or the terms "REQUIRED" or "SHALL", mean that the definition is an absolute
requirement of the specification.

2. MUST NOT
This phrase, or the phrase “SHALL NOT”, means that the definition is an absolute
prohibition of the specification.

3. SHOULD
This word, or the adjective "RECOMMENDED", mean that there may exist valid reasons in
particular circumstances to ignore a particular item, but the full implications must be
understood and carefully weighed before choosing a different course.

4. SHOULD NOT
This phrase, or the phrase "NOT RECOMMENDED" mean that there may exist valid
reasons in particular circumstances when the particular behavior is acceptable or even
useful, but the full implications should be understood and the case carefully weighed before
implementing any behavior described with this label.

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 9

ASC X12

- WORKING DRAFT -

5. MAY
This word, or the adjective "OPTIONAL", mean that an item is truly optional. One vendor
may choose to include the item because a particular marketplace requires it or because the
vendor feels that it enhances the product while another vendor may omit the same item. An
implementation which does not include a particular option MUST be prepared to
interoperate with another implementation which does include the option, though perhaps
with reduced functionality. In the same vein an implementation which does include a
particular option MUST be prepared to interoperate with another implementation which
does not include the option (except, of course, for the feature the option provides.)

3.6 Pre-defined Entities
Some entities expressed in BNF in this document derive from entities defined in other
documents referenced in this document. In this document, these entities are prefixed with
identifiers to make it clear that these entities are defined outside this document. The prefixes
and the documents they reference are as follows:

Prefix Agency Document

XML_ W3 Extensible Markup Language (XML)

XSD_ W3 XML Schema

CCT_ UN/CEFACT ebXML Core Components
Technical Specification

4 Syntax Neutral CICA Representation
The syntax neutral definitions represent the various syntactic entities of the CICA architecture as they
relate to one another.

CICA entities are either context-neutral or context-dependent. The context neutral entities are
Primitive, Component, Block, Assembly, and Template. The context-dependent entities are Module
and Document. Each of the context-neutral entities has a set of properties that are constant
regardless of its usage. In addition, all of these except Template has an additional set of properties
that are only relevant when the entity is used within a Module. The usage within the Module may
either be as an explicit member of the Module or as a member of one of the Module's members (and
so on, recursively down to entities that have no members).

The set of properties defined in an abstract superclass entity are called the constructive details. The
constructive details in a concrete subclass are inherited from its abstract superclass parent. For
clarity in this document, these inherited constructive details are not shown explicitly in the concrete
subclass list of properties. The inherited constructive details can not be modified in a concrete
subclass entity. The set of additional properties defined in a concrete subclass entity are called the
restrictive details. Different concrete subclasses of a single abstract superclass will differ in restrictive
details.

4.1 Primitives
Primitives are the lowest CICA entity and are based on a single CCT (reference section 4.9).
Each Primitive has one content component and zero or more supplementary components.
Each content and supplementary component may have a number of restrictions placed with
the Primitive subclass. The allowable list of restrictions, and the content of each CCT is listed
in section 4.1.1.

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 10

ASC X12

- WORKING DRAFT -

Primitive Abstract Superclass:

primitive = (primitive_name ,

 primitive_UID,

 primitive_XML_name ,

 primitive_description ,

 CCT_cct ,

 CCT_member_list }

CCT_member_list ::= content_component

 supplementary_component { supplementary_component }

content_component ::= CCT_member

supplementary_component ::= CCT_member

CCT_member = (CCT_member_name,

 CCT_member_XML_name,

 CCT_cct ,

CCT_datatype)

Primitive Concrete Subclass:

primitive_subclass = (primitive_subclass_name ,

primitive_subclass_UID,

 primitive_subclass_XML_name ,

 primitive_description ,

 CCT_cct ,

 subclass_CCT_member_list)

subclass_CCT_member_list ::= subclass_content_component

 subclass_supplementary_component { subclass_supplementary_component }

subclass_content_component ::= subclass_CCT_member

subclass_supplementary_component ::= subclass_CCT_member

subclass_CCT_member = (CCT_member_name,

 CCT_member_XML_name,

 CCT_member_type_XML_name,

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 11

ASC X12

- WORKING DRAFT -

 CCT_cct ,

 CCT_ requirements_flag ,

 CCT_datatype ,

[{ CCT_datatype _restrictions }])

CCT_datatype_restrictions = {

CCT_pattern ,

 CCT_length ,

 CCT_min_length ,

 CCT_max_length ,

 CCT_min_inclusive ,

 CCT_max_inclusive ,

 CCT_min_exclusive ,

 CCT_max_exclusive ,

 CCT_total_digits ,

 CCT_fraction_digits }

NOTE: Not every data type restriction is permitted for every date
type. The restrictions permitted for each data type are detailed in
section 4.1.1.

 [enumerations]

enumerations ::= enumeration_name enumeration { enumeration }

enumeration ::= enumeration_value enumeration_description

4.1.1 Primitive Restrictive Properties
Each content component and supplementary component has a specific generic CICA
data type. In addition, the value space of each of these may be further restricted by a
set of facets. This section describes the generic data types and the facets that may
be applied to them. In some cases, the facet may redefine the data type to one
whose value space is a subset of the base data type. For example, decimal may be
further restricted by assigning a data type of integer.

4.1.1.1 CICA Data Types

The generic, syntax independent data types in CICA, their descriptions, and the
value spaces associated with them are listed below.

1. string
A string is a sequence of zero or more characters. The value space of
string is the set of finite length sequences of zero or more characters.
The definition of character, its value space, and encoding is dependent
upon the implementation syntax. For example, in X12 EDI syntax the
string data type and character set are as defined in X12.6. In an XML

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 12

ASC X12

- WORKING DRAFT -

syntax representation of CICA, a string may consist of zero or more
UNICODE characters as specified in the XML Recommendation.

2. token
A token is a string of one or more characters, restricted such that there
may be no leading, trailing, or embedded spaces or other whitespace
characters, where whitespace characters are defined by the specific
implementation syntax. (NOTE: This is very similar to the schema
language token datatype, except that the CICA token is a single token
and a schema language token may be a set of tokens.)

3. boolean
A boolean indicates either true or false.
The value space of the boolean data type is as defined for the schema
language boolean datatype: “the •value space• required to support the
mathematical concept of binary-valued logic: {true, false}.”

4. integer
An integer is a whole base ten number with no fractional part and no
decimal point. The infinite set { …, -2, -1, 0, 1, 2, … }

5. decimal number
A decimal number is a base ten number that may have either or both of
an integer part and a fractional part. In syntax independent terms, the
value space of a decimal number is as defined for the schema language
decimal datatype : “set of the values i × 10^-n, where i and n are integers
such that n >= 0.” The value space of decimal number may be
constrained by data type limitations of the implementation syntax.

6. date
A date is a calendar date corresponding to an entire twenty-four hour
period. The value space of date is as defined for the schema language
date datatype: “the set of Gregorian calendar dates as defined in section
5.2.1 of ISO 8601.”

7. time
A time is an instant of time that recurs every day. The value space of
time is as defined for the schema language time datatype: “the space of
time of day values as defined in section 5.3 of ISO 8601.” Note that
implementation syntaxes may or may not include a time zone indication
in the time data type.

8. datetime
A datetime is a specific instance of time. The value space of time is as
defined for the schema language dateType datatype: “the space of
Combinations of date and time of day values as defined in section 5.4 of
ISO 8601.”

4.1.1.2 CICA Restrictive Facets

A facet is an attribute of an atomic data item (i.e., a content or supplementary
component of a Core Component Type), that constrains the value space of the
item beyond the constraints of the item’s assigned data type. The facets are
listed below with their definitions and data types.

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 13

ASC X12

- WORKING DRAFT -

1. pattern
The pattern facet is a string of characters, expressed as a regular
expression, that limits the value space of the item such that it must
conform to a specific pattern. A pattern must be a string and expressed
in CICA as a regular expression as specified in Appendix F of Part 2 of
the W3C XML Schema Recommendation. Implementation syntaxes may
require that patterns be specified in different formats.

2. length
The length facet limits the length of the data item to a specific length,
where the units of length is dependent on the data type. The value of a
length facet must be an integer value greater than or equal to zero.

3. min_length
The min_length facet limits the length of the data item to a specific
minimum length, where the units of length is dependent on the data type.
The value of a min_length facet must be an integer value greater than or
equal to zero.

4. max_length
The max_length facet limits the length of the data item to a specific
maximum length, where the units of length is dependent on the data type.
The value of a max_length facet must be an integer value greater than or
equal to zero.

5. min_inclusive
The min_inclusive facet limits allowable range of values a data item by
specifying a minimum value that is included in the range. The data type
of min_inclusive is the same as the data type of the item to which it is
applied.

6. max_inclusive
The max_inclusive facet limits allowable range of values a data item by
specifying a maximum value that is included in the range. The data type
of max_inclusive is the same as the data type of the item to which it is
applied.

7. min_exclusive
The min_exclusive facet limits allowable range of values a data item by
specifying a minimum value that is not included in the range. The data
type of min_exclusive is the same as the data type of the item to which it
is applied.

8. max_exclusive
The max_exclusive facet limits allowable range of values a data item by
specifying a maximum value that is not included in the range. The data
type of max_exclusive is the same as the data type of the item to which it
is applied.

9. fraction_digits
The fraction digits facet limits the maximum number of digits to the right
of the decimal point of a decimal number. The value of a fraction_digits
facet must be an integer value greater than or equal to zero.

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 14

ASC X12

- WORKING DRAFT -

10. enumeration
The enumeration facet limits the value space of a data item by limiting it
to a specific, finite set of values. Each member of the set is a two-tuple
with enumeration_value specifying the allowable value and
enumeration_description containing the freeform text description of the
value. The enumeration_value must be of the same data type as the
item to which the facet is applied.

enumeration_name ::= XML_string

enumeration_description ::= XML_string

enumeration_value ::= XSD_enumerationValue

4.1.1.3 Supported Facets for each Data Type
This subsection specifies the CICA restrictive facets allowed for each CICA data
type.

1. string

a. length

b. min_length

c. max_length

d. pattern

e. enumeration

2. token

a. length

b. min_length

c. max_length

d. pattern

e. enumeration

3. boolean
none

4. integer

a. total_digits

b. fraction_digits

c. pattern

d. enumeration

e. max_inclusive

f. max_exclusive

g. min_inclusive

h. min_exclusive

5. decimal number

a. total_digits

b. fraction_digits

c. pattern

d. enumeration

e. max_inclusive

f. max_exclusive

g. min_inclusive

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 15

ASC X12

- WORKING DRAFT -

h. min_exclusive

6. date

a. pattern

b. enumeration

c. max_inclusive

d. max_exclusive

e. min_inclusive

f. min_exclusive

7. time

a. pattern

b. enumeration

c. max_inclusive

d. max_exclusive

e. min_inclusive

f. min_exclusive

8. datetime

a. pattern

b. enumeration

c. max_inclusive

d. max_exclusive

e. min_inclusive

f. min_exclusive

length ::= XSD:positiveInteger

min_length ::= XSD:positiveInteger

max_length ::= XSD:positiveInteger

pattern ::= XSD:pattern

enumeration ::= XSD:enumeration

total_digits ::= XSD:positiveInteger

fraction_digits ::= XSD:nonNegativeInteger

max_inclusive ::= XSD:maxInclusive

max_exclusive ::= XSD:maxExclusive

min_inclusive ::= XSD:minInclusive

min_exclusive ::= XSD:minExclusive

4.1.1.4 CICA Data Types for CCT Content and Supplementary Components

The Core Component Types upon which CICA Primitives are based are listed below
with the CICA data types of the content and supplementary components. The value
spaces of each of these content and supplementary components are constrained as
specified in the Core Component Technical Specification. They may be further
constrained by the facets appropriate to each data type as listed in the previous
subsections.

1. CCT Amount

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 16

ASC X12

- WORKING DRAFT -

a. Content Component – decimal
• fraction_digits
• max_inclusive
• min_inclusive
• min_exclusive
• max_exclusive
• total_digits

b. Currency Identifier – string
• enumeration

c. Currency Code List Version Identifier – string

2. CCT BinObj
a. Content Component – string

• min_length
• max_length

b. Format Text – string
• enumeration

c. MimeCode – string
• enumeration

d. CharacterSet – string
• enumeration

e. EncodingCode – string
• enumeration

f. URI – string
• enumeration

g. FileNameText – string
• enumeration

3. CCT Code
a. Content Component – token

• min_length
• max_length
• pattern
• enumeration

b. ListAgencyIdentifier – string
• enumeration

c. ListAgencyNameText – string
• enumeration

d. ListAgencyName – string
• enumeration

e. ListIdentifier – string
• enumeration

f. ListSchemeURI – string
• enumeration

g. ListURI – string
• enumeration

h. ListVersionIdentifier – string
• enumeration

i. NameText – string
• enumeration

4. CCT DateTime
a. Content Component – datetime

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 17

ASC X12

- WORKING DRAFT -

• max_inclusive
• min_inclusive
• min_exclusive
• max_exclusive
• pattern

b. FormatText – string
• enumeration

5. CCT Identifier
a. Content Component – token

• min_length
• max_length
• pattern

b. IdSchemeAgency – string
• enumeration

c. IdSchemaAgencyNameText – string
• enumeration

d. IdSchemeIdentifier – string
• enumeration

e. IdSchemeNameText – string
• enumeration

f. IdSchemeURI – string
• enumeration

g. IdSchemeVersionIdentifier – string
• enumeration

6. CCT Indicator
a. Content Component – token

• pattern
• enumeration

 max of 2 values are allowed
b. FormatText – string

• enumeration
 fixed {“numeric”, ”textual”, ”binary”]

7. CCT Measure
a. Content Component – decimal

• total_digits
• fraction_digits
• min_exclusive
• max_exclusive
• min_inclusive
• max_inclusive
• enumeration
• pattern

b. UnitCode – token
• enumeration

c. UnitCodeListVersion – string
• enumeration

8. CCT Numeric
a. Content Component – decimal

• Integer

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 18

ASC X12

- WORKING DRAFT -

Note: a datatype of integer may be chosen to further restrict the content
component.

• total_digits
• fraction_digits
• min_inclusive
• max_inclusive
• min_exclusive
• max_exclusive
• pattern

b. FormatText – token
• enumeration

 1 of 3 values (“integer”, ”decimal”, ”percentage”)
 Note
 “Real Number” has been omitted because the content component is
 defined as decimal

9. CCT Quantity
a. Content Component – decimal

• total_digits
• fraction_digits
• min_inclusive
• max_inclusive
• min_exclusive
• max_exclusive
• min_length
• max_length
• pattern

b. UnitCode – token
• enumeration

c. UnitCodeListID – string
• enumeration

d. UnitCodeListAgencyID – string
• enumeration

e. UnitCodeListAgencyNameText – string
• enumeration

10. CCT Text
a. Content Component – string

• token
Note: token may be chosen to further restrict the base string datatype for
the content component.

• min_length
• max_length
• pattern
• enumeration

4.1.2 Superclass properties
4.1.2.1 Syntax Independent

• primitive_name - The name of the Primitive abstract superclass. MUST
conform to naming conventions defined in 4.10.

• primitive_UID – The unique identifier assigned to this Primitive.
• primitive_description - A description of the content of the Primitive.
• content_component - this carries the actual value of a Core Component,

as defined in the Core Components Technical Specification.

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 19

ASC X12

- WORKING DRAFT -

• supplementary_component - A supplementary component provides
additional semantics to qualify the semantics of the content component,
as defined in the Core Components Technical Specification.

• CCT_member_name – The name of the content or supplementary
component of the Primitive. These are content and supplementary
component names specified in the CCT.

• CCT - Core Component Type (reference section 4.8.13)
• datatype - One of the CICA data types defined in section 4.1.1.1.

4.1.2.2 XML Syntax Dependent
• primitive_XML_name - The name of the complexType that represents

the Primitive abstract superclass, based on the Block name, removing
characters to conform to the rules of nmtoken.

primitive_XML_name ::= XML_nmtoken

• For each supplementary component
CCT_member_XML_name - the name of the supplementary
component as used with the Primitive.

CCT_member_XML_name ::= XML_nmtoken

4.1.3 Subclass properties
4.1.3.1 Syntax Independent

• primitive_subclass_name - The name of the Primitive subclass. The
name SHALL be formed by appending a two digit sequence number to
the superclass primitive_name.

• primitive_subclass_UID – the unique identifier assigned to this Primitive
subclass.

• CCT_member_name – The name of the content or supplementary
component of the Primitive. These are content and supplementary
component names specified in the CCT.

• CCT - Core Component Type (reference section 4.8.13)
• datatype - One of the CICA data types defined in section 4.1.1.1.
• requirements_flag - As defined in section 4.8.1. Indicates the

requirement restriction imposed on the member of the Block member
constraint, that is, the requirements on the presence of the member
within the Component_subclass.

4.1.3.2 XML Syntax Dependent

• primitive_subclass_XML_name - The name of the complexType that
represents the Primitive concrete subclass. The name is formed by
appending a two digit sequence number to the name of the parent
abstract superclass Primitive.

primitive_subclass_XML_name ::= primitive_XML_name [0,1,2,…,9]
[0,1,2,…,9]

• CCT_member_XML_name - The XML name of the supplementary
component

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 20

ASC X12

- WORKING DRAFT -

CCT_member_XML_name ::=
supplementary_component_XML_name

• CCT_member_type_XML_name – The XML name of the simpleType
assigned to the content component XML element or supplementary
component XML attiribute

• CCT_member_type_XML_name ::=
content_component_type_XML_name |
supplementary_component_type_XML_name

• content_component_type_XML_name - The XML name for the schema
type representing the content component.

 For each content component restriction
• datatype_restriction - restrictions allowed on the Primitive’s content

component as defined in section 4.1.1

• For each supplementary component

• supplementary_component_XML_name - the name of the
supplementary component as used with the Primitive
supplementary_component_XML_name ::= XML_nmtoken

• supplementary_component_type_XML_name - the XML name for the
schema language type representing the supplementary component.

supplementary_component_type_XML_name ::=
primitive_XML_name _name_of_supplementary_component

primitive_XML_name _name_of_supplementary_component ::=
XML_nmtoken

• For each restriction
• datatype_restriction - restrictions allowed on the Primitive’s

supplementary component as defined in section 4.1.1

4.2 Components
Components are composed of two or more Primitives.

Abstract Superclass:

component ::= primitive primitive [{ primitive }]

component = (component_name ,

component_UID,

component_description ,

 component_XML_name ,

component_member_list)

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 21

ASC X12

- WORKING DRAFT -

component_member_list ::= component_member component_member
{ component_member }

component_member = (primitive_name ,

primitive_usage_name ,

primitive_usage_XML_name)

Component Concrete Subclass:

component_subclass = (component_subclass_name ,

component_subclass_UID,

component_subclass_XML_name ,

component_member_constraint_list)

component_member_constraint is a subclass of component_member

component_member_constraint_list ::= component_member_constraint

{ component_member_constraint }

component_member_constraint = (primitive_subclass_name ,

component_member_constraint_usage_name,

component_member_constraint_usage_XML_name,

max_occurs ,

min_occurs ,

requirements_flag ,

content_restriction_flag)

4.2.1 Superclass properties
4.2.1.1 Syntax Independent

• component_name - The name of the Component abstract superclass.
MUST conform to naming conventions defined in section 4.10.
component_name ::= XML_string

• component_UID – The unique identifier assigned to the Component.
• component_description - A description of the content of the Component.
• For each member of the Component

• primitive_usage_name - Is the name of the member as used within
the Component. MUST conform to naming conventions specified in
section 4.10.

primitive_usage_name ::= XML_string

• primitive_name - Is as defined in section 4.1 on Primitive

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 22

ASC X12

- WORKING DRAFT -

4.2.1.2 XML Syntax Dependent
• component_XML_name - The name of the complexType that

represents the Component abstract superclass, based on the Block
name, removing characters to conform to the rules of nmtoken.

component_XML_name ::= XML_nmtoken

• For each member of the Component
• primitive_usage_XML_name - The name of the element

representing the member Primitive as used within the Component.

primitive_usage_XML_name ::= XML_nmtoken

4.2.2 Subclass properties
4.2.2.1 Syntax Independent

• component_subclass_name - The name of the Component subclass.
The name SHALL be formed by appending a two digit sequence
number to the superclass component_name.

component_subclass_name ::= component_name [0,1,2,…,9]
[0,1,2,…,9]

• component_subclass_UID - The unique identifier assigned to the
Component subclass.

• For each member of the Component
• primitive_subclass_name - Is as defined in section 4.1 on

Primitive. MUST be the name of a Primitive subclass that is
derived from the abstract superclass Primitive defined in the
Primitive abstract superclass member.

• component_member_constraint_usage_name – the name of the
usage of the Primitive in the Component. Defaults to the
primitive_usage_name of the member in the abstract superclass
Component but may be overridden.

• requirements_flag - As defined in section 4.8.1. Indicates the
requirement restriction imposed on the member of the Block
member constraint, that is, the requirements on the presence of
the member within the Component_subclass.

• min_occurs - As defined in section 4.8.2Indicates the minimum
number of occurrences permitted for the Block constraint
member, that is, the member within the Component_subclass.

• max_occurs - As defined in section 4.8.3. Indicates the
maximum number of occurrences permitted for the Component
constraint member, that is, the member within the
Component_subclass.

• content_restriction_flag - As defined in section 4.8.4. Indicates
the content restriction applying to a subset of Primitive members
within the Component_subclass.

4.2.2.2 XML Syntax Dependent
• component_subclass_XML_name - The name of the complexType that

represents the Component concrete subclass. The name is formed by
appending a two digit sequence number to the name of the parent
abstract superclass Component.

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 23

ASC X12

- WORKING DRAFT -

component_subclass_XML_name ::= component_XML_name
[0,1,2,…,9] [0,1,2,…,9]

• For each member of the Component

• component_member_constraint_usage_XML_name – XML name
of the usage of the Primitive that is derived from the
component_member_constraint_usage_name according to section
4.10

• primitive_subclass_XML_name - The name of the complexType
that represents the Primitive concrete subclass, as defined in
section 4.1.3.

4.3 Blocks
Blocks are composed of one or more identity Primitives or Components and may also contain
one or more characteristic Primitives or Components.

An identity Primitive or identity Component provides sufficient information to distinguish a
party, location, event, or resource from other party, location, event, or resource. For example,
a UPC code uniquely distinguishes one grocery product from another.

A characteristic Primitive or characteristic Component provides descriptive information such
as physical or demographic details. For example, color, height, weight, and aroma.

Abstract Superclass:

block ::= identity { identity | characteristic }

identity ::= component | primitive

characteristic ::= component | primitive

block = (block_name ,

block_UID,

block_description ,

block_XML_name ,

block_type_flag ,

block_member_list)

block_type_flag ::= entity_type_flag

block_member_list ::= block_member { block_member }

block_member = (component_name | primitive_name),

identification_characteristic_flag ,

 block_member_usage_name , block_member_usage_XML_name)

Block Concrete Subclass:

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 24

ASC X12

- WORKING DRAFT -

block_subclass = (block_subclass_name ,

block_subclass_UID,

block_subclass_XML_name ,

block_member_constraint_list)

block_member_constraint_list ::= block_member_constraint

{ block_member_constraint }

block_member_constraint is a subclass of block_member

block_member_constraint =

((component_subclass_name | primitive_subclass_name),

block_member_constraint_usage_name,

block_member_constraint_usage_XML_name,

max_occurs ,

min_occurs ,

requirements_flag ,

content_restriction_flag)

4.3.1 Superclass properties
4.3.1.1 Syntax Independent properties

• block_name - The name of the Block abstract superclass. MUST
conform to naming conventions defined in 4.10.
block_name ::= XML_string

• block_UID - The unique identifier assigned to the Block.
• block_description - A description of the content of the Block.
• block_type_flag - As defined in section 4.8.5 on entity_type_flag.

Indicates the nature of the object described by the Block content.
• For each member of the Block

• block_member_usage_name - Is the name of the member as used
within the Block. MUST conform to naming conventions specified in
section 4.10.

• identification_characteristic_flag - As defined in section 4.8.6.
Indicates whether the Block member is an identity or characteristic.

• component_name - Is as defined in section 4.2 on Component.
• primitive_name - Is as defined in 4.1 on Primitive

4.3.1.2 XML syntax dependent properties
• block_XML_name - The name of the complexType that represents the

Block abstract superclass, based on the Block name, removing
characters to conform to the rules of nmtoken.

block_XML_name ::= XML_nmtoken

• block_subclass_UID - The unique identifier assigned to the Block
subclass.

• For each member of the Block

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 25

ASC X12

- WORKING DRAFT -

• block_member_usage_XML_name - The name of the element
representing the member Primitive or Component as used within
the Block.

block_member_usage_XML_name ::= XML_nmtoken

• block_member_constraint_usage_XML_name – the name of the
usage of the member in the Block. Defaults to the usage name of
the member of the abstract superclass Block but may be
overridden.

block_member_constraint_usage_XML_name ::=
XML_nmtoken

4.3.2 Subclass properties
4.3.2.1 Syntax Independent properties

• block_subclass_name - The name of the Block subclass. The name
SHALL be formed by appending a two digit sequence number to the
superclass Block_name.

block_subclass_name ::= block_name [0,1,2,…,9] [0,1,2,…,9]

• For each member of the Block
• block_member_constraint_usage_XML_name – XML name of the

usage of the member of the Block that is derived from the
block_member_constraint_usage_name according to section 4.10.

• component_subclass_name - Is as defined in section 4.2 on
Component. MUST be the name of a Component subclass that is
derived from the abstract superclass Component defined in the
Block abstract superclass member.

• primitive_subclass_name - Is as defined in 4.1 on Primitive. MUST
be the name of a Primitive subclass that is derived from the abstract
superclass Primitive defined in the Primitive abstract superclass
member.

• requirements_flag - As defined in section 4.8.1. Indicates the
requirement restriction imposed on the member of the Block
member constraint, that is, the requirements on the presence of the
member within the Block_subclass.

• min_occurs - As defined in section 4.8.2. Indicates the minimum
number of occurrences permitted for the Block constraint member,
that is, the member within the Block_subclass.

• max_occurs - As defined in section 4.8.3. Indicates the maximum
number of occurences permitted for the Block constraint member,
that is, the member within the Block_subclass.

• content_restriction_flag - As defined in section 4.8.4. Indicates the
content restriction applying to a subset of Component or Primitive
members within the Block_subclass.

4.3.2.2 XML syntax dependent properties
• block_subclass_XML_name - The name of the complexType that

represents the Block concrete subclass. The name is formed by
appending a two digit sequence number to the name of the parent
abstract superclass Block.

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 26

ASC X12

- WORKING DRAFT -

block_subclass_XML_name ::= block_XML_name [0,1,2,…,9]
[0,1,2,…,9]

• For each member of the Block
• block_member_usage_XML_name - The name of the element

representing the member Primitive or Component as used within
the Block.

4.4 Assemblies
Assemblies are used for grouping semantically equivalent syntactic entities. Assemblies are
composed of two or more Blocks and/or assemblies.

Abstract Superclass:

assembly ::= (assembly | block) (assembly | block) {(assembly |
block)}

assembly = (assembly_name ,

 assembly_UID,

 assembly_type_flag ,

 assembly_XML_name ,

 assembly_description ,

 assembly_member_list)

assembly_member_list ::= assembly_member

 assembly_member

 { assembly_member }

assembly_member = ((block_name | member_assembly_name ,

 assembly_member_usage_name ,

 assembly_member_usage_XML_name)

Assembly Concrete Subclass:

assembly_subclass = (assembly_subclass_name ,

assembly_subclass_UID,

assembly_subclass_XML_name ,

assembly_member_constraint_list)

assembly_member_constraint_list ::= assembly_member_constraint

{ assembly_member_constraint }

assembly_member_constraint is a subclass of assembly_member

assembly_member_constraint =

((block_subclass_name | member_assembly_subclass_name),

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 27

ASC X12

- WORKING DRAFT -

assembly_member_constraint_usage_name,

assembly_member_constraint_usage_XML_name,

requirements_flag ,

min_occurs ,

max_occurs ,

 content_restriction_flag)

4.4.1 Superclass properties
4.4.1.1 Syntax Independent

• assembly_name - The name of the Assembly abstract superclass.
MUST conform to naming conventions defined in 4.10.
assembly_name ::= XML_string

• assembly_UID - The unique identifier assigned to the Assembly.
• assembly_description - A description of the content of the Assembly.
• member_assembly_name - The assembly_name of an Assembly that is

a member of this Assembly.
• assembly_type_flag - As defined in section 4.8.5 on entity_type_flag.

Indicates the nature of the object described by the Assembly content.

• For each member of the Assembly:
• assembly_member_usage_name - Is the name of the member as

used within the Assembly. MUST conform to naming conventions
specified in section 4.10.

• member_assembly_name - The assembly_name of an Assembly
that is a member of this Assembly.

• block_name - Is as defined in section 4.3 on Block.

4.4.1.2 XML Syntax Dependent
• assembly_XML_name - The name of the complexType that represents

the Assembly abstract superclass, based on assembly_name, removing
characters to conform to the rules of nmtoken.

assembly_XML_name ::= XML_nmtoken

• assembly_subclass_UID - The unique identifier assigned to the
Assembly subclass.

• assembly_member_constraint_usage_XML_name – XML name of the
Assembly member

assembly_member_constraint_usage_XML_name ::=
XML_nmtoken

• For each member of the Assembly:
• assembly_member_usage_XML_name - The name of the element

representing the member Block or Assembly as used within the
Assembly.

assembly_member_usage_XML_name ::= XML_nmtoken

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 28

ASC X12

- WORKING DRAFT -

4.4.2 Subclass properties
4.4.2.1 Syntax Independent

• assembly_subclass_name - The name of the Assembly subclass. The
name SHALL formed by appending a two digit sequence number to the
superclass assembly_name.

assembly_subclass_name ::= assembly_name [0,1,2,…,9]
[0,1,2,…,9]

• For each Assembly member of the Assembly
• member_assembly_subclass_name - The

assembly_subclass_name of a concrete subclass that is a member
of the concrete subclass of the Assembly. MUST be the name of a
concrete subclass of the abstract superclass named by
member_assembly_name.

• For each Block member of the Assembly
• block_subclass_name - Is as defined in section 4.3 on Block.

MUST be the name of a Block subclass that is derived from the
abstract superclass Block defined in the Assembly abstract
superclass member.

• For each member of the Assembly
• assembly_member_constraint_usage_name – the name of the

usage of the member in the Assembly. Defaults to the usage name
of the member in the abstract superclass Assembly, but may be
overridden.

• requirements_flag - As defined in section 4.8.1. Indicates the
requirement restriction imposed on the member of the Assembly
member constraint, that is, the requirements on the presence of the
member within the Assembly_subclass.

• min_occurs - As defined in section 4.8.2. Indicates the minimum
number of occurrences permitted for the Assembly constraint
member, that is, the member within the Assembly_subclass.

• max_occurs - As defined in section 4.8.3. Indicates the maximum
number of occurrences permitted for the Assembly member
constraint, that is, the member within the Assembly_subclass.

• content_restriction_flag - As defined in section 4.8.4. Indicates the
content restriction applying to a subset of members within the
Assembly_subclass.

4.4.2.2 XML syntax dependent properties
• assembly_XML_name - The name of the complexType that represents

the Assembly abstract superclass, based on assembly_name, removing
characters to conform to the rules of nmtoken.

• For each member of the Assembly
• assembly_member_constraint_usage_XML_name – the XML name

of the usage of the member of the Assembly that is derived from the
assembly_member_constraint_usage_name according to section
4.10.

• assembly_subclass_XML_name - The name of the complexType
that represents the Assembly concrete subclass. The name is

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 29

ASC X12

- WORKING DRAFT -

formed by appending a two digit sequence number to the name of
the parent abstract superclass Assembly, assembly_XML_name.

• assembly_subclass_XML_name ::= assembly_XML_name
[0,1,2,…,9] [0,1,2,…,9]

4.5 Templates
A template is the basis from which documents are created. Templates are an abstract
syntactic entity. Templates do not have all internal syntactic entities referenced down to
primitives. (i.e. Slots are abstract sub-entities)

Abstract Superclass:

template = (template_name ,

 template_UID,

 template_description ,

 template_family ,

 business_process { business_process },

 business_process_family { business_process_family },

 business_sub_process { business_sub_process },

 business_sub_process_family { business_sub_process_family },

 triggering_event_description ,

 slot_list)

slot_list ::= slot_entry [{ slot_entry }]

slot_entry = (slot_name ,

 slot_UID,

 slot_XML_name ,

 slot_purpose ,

 slot_detail_flag ,

 slot_type_flag ,

 slot_module_list ,

 abstract_requirements_flag ,

 abstract_repeatability_flag)

slot_type_flag ::= entity_type_flag

slot_module_list ::= [{ module_entry }]

module_entry = (module_name ,

 context_category_value_list)

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 30

ASC X12

- WORKING DRAFT -

context_category_value_list ::= [{ context_category_value_tuple }]

context_category_value_tuple ::= context_category
context_category_identification_scheme_name
context_category_identifier_value

4.5.1 Superclass Properties
4.5.1.1 Syntax Independent properties

• template_name - The name of the template abstract superclass. MUST
conform to naming conventions defined in 4.10.

• template_UID - The unique identifier assigned to the template.
• template_description - A description of the content of the template.
• template_family - The name of a family of templates which this

template is a member.
• business_process - The name of a business process of which this

template is a member. MUST be a context_category_identifier_value
from the UN/CEFACT Catalogue of Common Business Processes.

• business_process_family - The name of a business process family of
which this template is a member. MUST be a
context_category_identifier_value from the UN/CEFACT Catalogue of
Common Business Processes.

• business_sub_process - The name of a business sub process of which
this template is a member. MUST be a
context_category_identifier_value from the UN/CEFACT Catalogue of
Common Business Processes.

• business_sub_process_family - The name of a business sub process
family of which this template is a member. MUST be a
context_category_identifier_value from the UN/CEFACT Catalogue of
Common Business Processes.

• triggering_event_description - A description of an event, or set of
events, that cause generation of a Document using this template

• context_category - As defined in section 4.8.10. Indicates the set of
contexts in which the template can be applied.

• For each slot in the Template
• slot_name - Is the name of the slot member as used within the

template. MUST conform to naming conventions specified in
section 4.10.

• slot_UID - The unique identifier assigned to the slot.
• slot_purpose - A description of the purpose fulfilled by a slot in the

template
• slot_detail_flag - As defined in section 4.8.9. Indicates if the slot is

part of the repeating detail of the template
• abstract_requirements_flag - As defined in section 4.8.7. Indicates

the requirement restriction imposed on the slot of the template, that
is, the requirements on the presence of of the slot within the
template.

• abstract_repeatability_flag - As defined in section 4.8.8. Indicates
the repeatability restriction imposed on the slot of the template, that
is, if the slot can be repeated within the template. This repeatability
is independent of the detail repeating aspect.

• context_category - As defined in section 4.8.10. Indicates the set of
contexts in which the template can be applied.

• slot_type_flag - A slot primarily describes a person, resource, event,
or location. Valid values for slot_type_flag are described in section
4.8.5 on entity_type_flag.

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 31

ASC X12

- WORKING DRAFT -

4.5.1.2 XML syntax dependent properties
• xlot_XML_name - The XML Slot Name is used for the name of the XML

element representing the slot in an instance of the XML representation
of the document. The XML Slot Name SHALL be based on the
slot_name, modified as appropriate to conform to the requirements of
nmtoken.

• slot_XML_name ::= XML_nmtoken

4.6 Modules
A Module is a syntactic entity that fills slots. Each Module is composed of one or more
assemblies and/or Blocks. Modules are concrete subclasses, their abstract superclass
parents are Slots in Templates. Unlike the other subclass to superclass relationships in the
CICA architecture, the construction of the child is not determined by its parent. The primary
requirement is that each Module must fulfill the purpose defined for the Slot.

Concrete Class:

module ::= assembly_subclass | block_subclass [{ assembly_subclass |
block_subclass }]

module = (module_name ,

module_UID,

module_XML_name,

module_description ,

module_type_flag ,

 module_node_list ,

context_category_value_list ,

responsible_subcommittee_name)

module_node_list ::= module_node { module_node }

module_node = ((assembly_subclass_name | block_subclass_name),

module_node_usage_name ,

module_node_usage_XML_name ,

 requirements_flag ,

 min_occurs ,

 max_occurs ,

content_restriction_flag)

4.6.1 Module Properties
4.6.1.1 Syntax Independent properties

• module_name - The name of the Module concrete superclass. MUST
conform to naming conventions defined in 4.10.

• module_UID - The unique identifier assigned to the Module.
• module_description - Description for the Module.

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 32

ASC X12

- WORKING DRAFT -

• responsible_subcommittee_name - The name of the ASC X12
subcommittee responsible for the maintenance of the document.

• module_type_flag - A slot primarily describes a person, resource,
event, or location. Valid values for module_type_flag are described in
section 4.8.5 on entity_type_flag.

• context_category - As defined in section 4.8.10. Indicates the set of
contexts in which the Module applies.

• For each member of the Module
• module_node_usage_name - Is the name of the Module member

as used within the Module. MUST conform to naming conventions
specified in section 4.10.

• requirements_flag - As defined in section 4.8.1. Indicates the
requirement restriction imposed on the member of the Module
member constraint, that is, the requirements on the presence of the
member within the Module concrete subclass.

• min_occurs - As defined in section 4.8.2. Indicates the minimum
number of occurences permitted for the Module constraint member,
that is, the member within the Module concrete subclass.

• max_occurs - As defined in section 4.8.3. Indicates the maximum
number of occurences permitted for the Module constraint member,
that is, the member within the Module concrete subclass.

• content_restriction_flag - As defined in section 4.8.4. Indicates the
content restriction applying to a subset of Block or Assembly
members within the Module.

4.6.1.2 XML syntax dependent properties
• module_XML_name – The name of the complexType representing the

Module. The module_XML_name is derived from module_name
according to the rules described in section 4.10.2

module_XML_name ::= XML_nmtoken

• module_node_usage_XML_name - The name of the element
representing the member Assembly subclass name or Block subclass
name as used within the Module.

module_node_usage_XML_name ::= XML_nmtoken

4.7 Documents
Documents are completed frameworks, or templates. A Document is defined when a template
has all its slots filled with Modules. A document has all internal syntactic entities resolved down
to Primitive elements.

Concrete Subclass:

document ::= module { module }

document = (document_name ,

document_UID,

document_XML_name ,

document_description ,

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 33

ASC X12

- WORKING DRAFT -

template_name ,

context_category_value_list ,

responsible_subcommittee_name ,

slotted_module_list,

 detail_repeat)

slotted_module_list ::= slotted_module_node { slotted_module_node }

slotted_module_node = (module_name ,

module_usage_name ,

module_usage_XML_name ,

requirements_flag ,

min_occurs ,

max_occurs)

4.7.1 Subclass Properties
4.7.1.1 Syntax Independent properties

• document_name - The name of the document concrete subclass.
MUST conform to naming conventions defined in 4.10.

• document_UID - The unique identifier assigned to the document.
• document_description - Description for the document.
• template_name - The name of the template abstract superclass that is

the framework for this document.
• context_category - As defined in section 4.8.10. Indicates the set of

contexts in which the document applies.
• responsible_subcommittee_name - The name of the ASC X12

subcommittee responsible for the maintenance of the document.
• detail_repeat – As defined in section 4.8.13. Indicates the number of

times that the detail area may repeat.

• For each Module in the Document
• module_name – As defined in 4.6.1.1
• module_usage_name – The name of the Module as used in the

document. Defaults to the slot name, but may be over-ridden.
• requirements_flag - As defined in section 4.8.1. Indicates the

requirement restriction imposed on the Module.
• min_occurs - As defined in section 4.8.2. Indicates the minimum

number of occurrences permitted for the Module.
• max_occurs - As defined in section 4.8.3. Indicates the maximum

number of occurences permitted for the Module.

4.7.1.2 XML syntax dependent properties
• document_XML_name - The name of the top level element

representing the document.

document_XML_name ::= XML_nmtoken

• module_usage_name - The name of the Module in the document.
• module_usage_XML_name - The name of the element representing the

Module in the document.

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 34

ASC X12

- WORKING DRAFT -

module_usage_XML_name ::= XML_nmtoken

4.8 Common Symbols
These are symbols referenced throughout the document. Their definition is provided here by
describing them in terms of their value space and lexical space.

4.8.1 requirements_flag
4.8.1.1 Value Space

Indicates that the presence of the member within its parent entity is either
mandatory, optional, or not-used. The value of the requirements flag MUST
be consistent with that of the min occurs property, i.e., the requirements flag
MUST indicate if mandatory if the min occurs is greater than one, and vice
versa, and the requirements flag MUST indicate optional if the min occurs is
equal to zero.

4.8.1.2 Lexical Space
requirements_flag ::= M | O | N

where the character 'M' represents mandatory, 'O' represents optional, and
‘N’ indicates the member is not used.

Note: requirements_flag is only used on the members of the concrete
subclasses Component_subclass, Block_subclass, Assembly_subclass,
and Module.

4.8.2 min_occurs
4.8.2.1 Value Space

A non-negative integer.

4.8.2.2 Lexical Space
min_occurs ::= [0,1,2, …]

Note: min_occurs is used on the members of the concrete subclasses
Component_subclass, Block_subclass, Assembly_subclass, and Module.

4.8.3 max_occurs
4.8.3.1 Value Space

A positive integer or positive infinity.

4.8.3.2 Lexical Space
max_occurs ::= [1,2,3,…] | unbounded

where the string "unbounded" represents positive infinity.

Note: max_occurs is used on the members of the concrete subclasses
Component_subclass, Block_subclass, Assembly_subclass, and Module.

4.8.4 content_restriction_flag
4.8.4.1 Value Space

Identifies that the member is an element of a subset of the parent entity's
members sharing content restriction. A parent entity MUST have no more
than one such content-restricted subset from the set of its members. The
content restriction is one of:

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 35

ASC X12

- WORKING DRAFT -

1. Exclusive OR, meaning one and only one member of the subset
may be present

2. Inclusive OR, meaning at least one of one member of the subset
may be present

3. No content restriction

The value of the content restriction flag MUST be consistent with the value
of the requirements flag. If there is a content restriction, the requirements
flag MUST indicate the member is optional.

4.8.4.2 Lexical Space
content_restriction_flag ::= X | A | Null

where the character 'X' represents an Exclusive OR, 'A' represents an
Inclusive OR, and the absence of either represents no content restriction.

Note: content_restriction_flag is used on Component, Block, Assembly,
Module.

4.8.5 entity_type_flag
4.8.5.1 Value Space

Identifies the type of a CICA construct. The entity_type_flag is one of:

1. Party
2. Location
3. Event
4. Resource

4.8.5.2 Lexical Space
entity_type_flag ::= P | L | E | R

Where the character 'P' represents a Party, 'L' represents a Location, ‘E’
represents an Event, and ‘R’ represents a Resource.

Note: entity_type_flag is only used on the abstract superclass of the
corresponding CICA construct.

4.8.6 identification_characteristic_flag
4.8.6.1 Value Space

Indicates the nature of a Block member. The identification characteristic
flag is one of:

1. Identification
2. Characteristic

4.8.6.2 Lexical Space
identification_characteristic_flag ::= I | C

where the character 'I' represents identification and 'C' represents
characteristic.

Note: identification_characteristic_flag is only used on the members of the
abstract superclass Block

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 36

ASC X12

- WORKING DRAFT -

4.8.7 abstract_requirements_flag
4.8.7.1 Value Space

Indicates that the presence of the member within its parent entity is either
mandatory or optional. The value of the requirements flag MUST be
consistent with that of the min occurs property, i.e., the requirements flag
MUST indicate mandatory if the min occurs is greater than one, and vice
versa, and the requirements flag MUST indicate optional if the min occurs is
equal to zero.

4.8.7.2 Lexical Space
abstract_requirements_flag ::= M | O

where the character 'M' represents mandatory and 'O' represents optional.

Note: abstract_requirements_flag is only used on the members of the
abstract superclass template

4.8.8 abstract_repeatability_flag
4.8.8.1 Value Space

Indicates that the member can be present one or multiple times. In either
case, the presence of one member (or multiple members) MAY be affected
by a Requirement Flag also associated with the member. The repeatability
flag is one of:

1. Singular, meaning the member may appear once and only once.
2. Multiple, meaning the member may appear one or more times

4.8.8.2 Lexical Space
abstract_repeatability_flag ::= S | M

where the character 'S' represents Singular, and 'M' represents multiple

Note: abstract_repeatability_flag is only used on the members of the
abstract superclass template

4.8.9 slot_detail_flag
4.8.9.1 Value Space

Indicates if the slot is part of the detail section of the template. All Modules
that fill slots with the slot_detail_flag set to detail will repeat as a group.

4.8.9.2 Lexical Space
slot_detail_flag ::= D | null

 null - represents the absence of data.

Note: slot_detail_flag is only used on the members of the abstract
superclass template

4.8.10 context_category

4.8.10.1 Value Space

These are the eight approved context categories defined in section 6.2.2
of the CCTS :

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 37

ASC X12

- WORKING DRAFT -

Business Process
Product Classification
Industry Classification
Geopolitical
Official Constraints
Business Process Role
Supporting Role
System Capabilities

4.8.10.2 Lexical Space

context_category ::= BP | PC | IC | GP | OC | BR | SR | SC

Where the codes represent the following values:

BP Business Process
PC Product Classification
IC Industry Classification
GP Geopolitical
OC Official Constraints
BR Business Process Role
SR Supporting Role
SC System Capabilities

4.8.11 context_category_identification_scheme_name
4.8.11.1 Value Space

The name of the identification scheme as specified in section 6.6.2
of the CCTS.
context_category_identification_scheme_name ::= CCT_identification_scheme

4.8.11.2 Lexical Space

NOTE: This space contains the names of the identification schemes referenced in the
CCTS. However, some of the context categories do not identify identification schemes.
So, this lexical space only defines the known entries, and other entries are possible as
indicated by the wild card asterisk.

"UN/CEFACT Catalogue of Common Business Processes" |
"Universal Standard Product and Service Specification (UNSPSC)" |
"Standard International Trade Classification (SITC Rev .3)" |
"Harmonized Commodity Description and Coding System (HS)" |
"Classification Of the purposes of non Profit Institutions serving households (COPI)" |
"International Standard Industrial Classification (ISIC)" |
"Universal Standard Product and Service Specification (UNSPSC) Global" |
"ISO 3166" |
"UN/EDIFACT Code List for DE 3035 Party Roles" |
*

4.8.12 context_category_identifier_value

The value space and lexical space are as defined in the relevant scheme.
context_category_identifier_value ::= CCT_identifier_value

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 38

ASC X12

- WORKING DRAFT -

4.8.13 detail_repeat
4.8.13.1 Value Space

A positive integer or positive infinity.

4.8.13.2 Lexical Space
detail_repeat ::= [1,2,3,…] | unbounded

where the string "unbounded" represents positive infinity.

Note: detail_repeat is used on the document.

4.9 Symbols from Other Sources

This subsection provides the source definition for symbols used in this document but whose
definitions are specified in other documents. The documents listed in the Source column are
fully specified in section 2.

Symbol Source Term or Definition in
Source

Nmtoken Extensible Markup Language (XML) NMTOKEN

CCT ebXML Core Components
Technical Specification

One of the Approved Core
Component Types as listed in
table 8.1

4.10 Naming Conventions

4.10.1 Item and Usage Names
In general, item names (such as assembly_name and block_name) and usage
names (such as block_usage_name) shall conform to the rules for constructing the
"property term" as defined in the UN/CEFACT ebXML Core Components Technical
Specification. The item name SHOULD in most cases be more general than a usage
name, since the usage name represents an instance of the item when used in a
larger construct. In most cases, the property term SHOULD correspond to a
common business term.

Item names, except for Primitive names, SHALL have the item's CICA type name
appended. For example, a Block that conveyed an individual's name would be
"Person Name Block". Primitives SHALL have the CCT representation term
appended.

Usage names SHALL be a suitable property term with nothing appended, with one
exception. Primitives that represent codes, and coded supplementary components
within Primitives, shall have "Code" appended to the name.

Usage names of supplementary components within Primitives SHALL be as defined
in the corresponding Core Component Type, as defined in the UN/CEFACT ebXML
Core Components Technical Specification

4.10.2 XML Names
Two types of XML names are required:

1. Element and attribute names - These represent usage names.

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 39

ASC X12

- WORKING DRAFT -

2. Simple and complex type names - These represent item names as well as
intermediate, generic type names for Primitive content and supplementary
components required when following certain conventions for using schema
language.

Usage names for XML are constructed from the base corresponding CICA usage
name. For Assembly, Block, Component, and Primitive, the XML type name is
constructed from the base corresponding item name. These XML names SHALL be
constructed from the base names according to the following algorithm:

1. Remove spaces between words

2. Capitalize the initial letter of each word, and set the remaining letters to lower
case. (This is commonly called upper camel case)

3. If a word in the usage name appears on the list of X12 list of approved
abbreviations, replace the word with the corresponding abbreviation,
including the specified capitalization of the letters in the abbreviation.

The XML type name of the content component of a Primitive SHALL be constructed
according to the following production:

content_component_type_XML_name ::= primitive_XML_name _Content

The XML type name of a supplementary component of a Primitive SHALL be
constructed according to the following production:

supplementary_component_type_XML_name ::=
primitive_XML_name _CCT_member_XML_name

primitive_XML_name _CCT_member_XML_name ::= XML_nmtoken

All XML usage and type names MUST satisfy the production of NMTOKEN, as
specific in the W3C XML Recommendation, Version 1.0.

4.10.3 Generic versus Specific Usage Names
In X12 EDI syntax it is common to use a qualifier and value pair to fully specify the
semantics of an item of data. For example, in the N1 Name segment, Data Element
66, Identification Code Qualifier, in N1_03, specifies the type of identification code
that appears in Data Element 67, Identification Code, in N1_04. So, D-U-N-S
Number is conveyed by placing a "1" in N1_03, and the DUNS number in N1_04.

In contrast, CICA is intended to support a greater degree of semantic specificity in
usage names. However, a generic usage name with qualifier/value scheme is
supported for instances where message designers determine that a generic usage
name satisfies business requirements better than a specific usage name. Reasons
for this determination may include, but may not be limited to, a large set of specific
usage names, a dynamic set of usage semantics, or qualifiers based on existing
external code lists.

The following general principle SHALL apply when a Primitive is used more than once
within the Block and each usage has different semantics: A specific usage name for
each usage SHOULD be assigned if there are less than ten different semantic
usages. If there are ten or more different semantic usages, a generic usage name

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 40

ASC X12

- WORKING DRAFT -

with a qualifying required supplementary component MAY be used instead of specific
usage names.

5 W3C XML Schema Language Schema CICA
Representation
A CICA document is represented in W3C XML Schema Language by a single schema document that
defines XSD constructs that correspond only to the document, Module, and concrete subclasses for
the referenced assemblies, Blocks, Components, and Primitives. The following subsections describe
the specific XSD representation of each of these CICA entities. In addition, subsection 5.1 specifies
the overall structure of a schema for a CICA document

The relevant XSD fragments are represented in BNF notation, using literal values for XSD syntax and
terminal symbols defined in section 4 for CICA entities. Where necessary, additional terminal
symbols required by XSD are defined in this section.

5.1 Overall Structure
This subsection defines the XSD declarations for items such as the schema root document
element with associated attributes and documentation, required both by XSD for a compliant
schema document and by X12's use of XSD. A CICA document SHALL be represented in
W3C XML Schema Language (or XSD) by a single, fully self-contained schema document.
The name of the schema document, usually as stored on a disk drive or referenced as part of
a URL, SHALL be the XML name of the document with ".xsd" appended.

CICA_schema ::=

<?xml version ="1.0" encoding="utf-8"?>

<xs:schema version="X12_version" ↵

xmlns:xs="http://www.w3.org/2001/XMLSchema" ↵

xmlns="X12_namespace" targetNamespace="X12_namespace" ↵
elementFormDefault="unqualified" attributeFormDefault="unqualified">

CICA_document_definition

CICA_module_definition { CICA_module_definition }

{ CICA_assembly_definition }

CICA_block_definition { CICA_block_definition }

{ CICA_component_definition }

CICA_primitive_definition { CICA_primitive_definition }

</xs:schema>

The following symbols are defined for this production:

• CICA_schema – a CICA document represented in W3C XSD schema.
• X12_version - This is the coded X12 version and release, as identified by Data Element

480, the Version/Release/Industry Identifier Code, from the X12 Data Element Dictionary.
However, only the six digit major version/minor release format is permitted.
X12_version ::= [0,1,2,…,9] [0,1,2,…,9] [0,1,2,…,9] [0,1,2,…,9] [0,1,2,…,9] [0,1,2,…,9]

• X12_namespace - This is a Uniform Resource Name. The production is as follows:

X12_namespace ::= urn:x12:schemas: X12_version

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 41

ASC X12

- WORKING DRAFT -

Other symbols are defined in the succeeding sections.

5.2 Document

A CICA document is represented in XSD with an element declaration an anonymous, in-line
complexType declaration. The complexType declaration has a sequence content model as
defined in the W3C XML Schema Recommendation, Part 1. Each of the member elements of
the sequence corresponds to a Module.

CICA_document_definition ::=

<xs:element name="document_XML_name">

<xs:complexType>

<xs:annotation>

<xs:documentation>

document_documentation

</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="module_usage_XML_name" ↵

type="module_XML_name" ↵

minOccurs="min_occurs" ↵
maxOccurs="max_occurs"/>

[

<xs:element name=”detail” ↵
maxoccurs=”detail_repeat”>

<xs:complexType>

 <xs:sequence>

<xs:element name= ↵
"slotmodule_usage_name"

type="module_XML_name" ↵

minOccurs="min_occurs" ↵
maxOccurs="max_occurs"/>

{

<xs:element name= ↵
"slotmodule_usage_name"

type="module_XML_name" ↵

minOccurs="min_occurs" ↵
maxOccurs="max_occurs"/>

}

 </xs:sequence>

</xs:complexType>

</xs:element>

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 42

ASC X12

- WORKING DRAFT -

]

{ <xs:element name="slotmodule_usage_name" ↵

type="module_XML_name" ↵

minOccurs="min_occurs" ↵
maxOccurs="max_occurs"/>

}

<xs:sequence>

</xs:complexType>

</xs:element>

The following symbols are defined for this production:

• document_documentation - The specific contents of the documentation element are
beyond the scope of this document at this time. It MAY be filled as standards developers
best determine at time of schema generation

document_documentation ::= XML_string

• slotmodule_usage_name - the name of the Module, from the slot XML name defined on
the template or the Module XML named defined by the document.

slotmodule_usage_name ::= module_usage_name | slot_XML_name

• detail - the element name for the detail section of the document.

detail ::= Detail

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 43

ASC X12

- WORKING DRAFT -

5.3 Module
A CICA Module is represented in XSD with a complexType declaration. The complexType
declaration has a sequence content model as defined in the W3C XML Schema
Recommendation, Part 1. Each of the member elements of the sequence corresponds to an
Assembly or Block.

CICA_module_definition ::=

<xs:complexType name="module_XML_name">

<xs:annotation>

<xs:documentation>

module_documentation

</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="module_node_usage_XML_name" ↵

type="assembly_subclass_XML_name | ↵

block_subclass_XML_name" ↵

minOccurs="min_occurs" ↵
maxOccurs="max_occurs"/>

{

<xs:element name="module_node_usage_XML_name" ↵

type="assembly_subclass_XML_name | ↵

block_subclass_XML_name" ↵

minOccurs="min_occurs" ↵
maxOccurs="max_occurs"/>

}

<xs:sequence>

</xs:complexType>

The following symbols are defined for this production:
• module_documentation - The specific contents of the documentation element are

beyond the scope of this document at this time. It MAY be filled as standards developers
best determine at time of schema generation

module_documentation ::= XML_string

5.4 Assembly
A CICA Assembly is represented in XSD with a complexType declaration. The complexType
declaration has a sequence content model as defined in the W3C XML Schema
Recommendation, Part 1. Each of the member elements of the sequence corresponds to an
Assembly or Block.

CICA_assembly_definition ::=

<xs:complexType name="assembly_subclass_XML_name">

<xs:annotation>

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 44

ASC X12

- WORKING DRAFT -

<xs:documentation>

assembly_documentation

</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element ↵
name="assembly_member_constraint_usage_XML_name" ↵

type="assembly_subclass_XML_name | ↵

block_subclass_XML_name" ↵

minOccurs="min_occurs" ↵
maxOccurs="max_occurs"/>

{

<xs:element ↵
name="assembly_member_constraint_usage_XML_name" ↵

type="assembly_subclass_XML_name | ↵

block_subclass_XML_name" ↵

minOccurs="min_occurs" ↵
maxOccurs="max_occurs"/>

}

<xs:sequence>

</xs:complexType>

The following symbols are defined for this production:
• assembly_documentation - The specific contents of the documentation element are

beyond the scope of this document at this time. It MAY be filled as standards developers
best determine at time of schema generation

assembly_documentation ::= XML_string

5.5 Block

A CICA Block is represented in XSD with a complexType declaration. The complexType
declaration has a sequence content model as defined in the W3C XML Schema
Recommendation, Part 1. Each of the member elements of the sequence corresponds to a
Primitive or Component

CICA_block_definition ::=

<xs:complexType name="block_subclass_XML_name">

<xs:annotation>

<xs:documentation>

block_documentation

</xs:documentation>

</xs:annotation>

<xs:sequence>

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 45

ASC X12

- WORKING DRAFT -

<xs:element name= ↵
"block_member_constraint_usage_XML_name" ↵

type="component_subclass_XML_name | ↵

primitive_subclass_XML_name" ↵

minOccurs="min_occurs" ↵
maxOccurs="max_occurs"/>

{

<xs:element ↵
name="block_member_constraint_usage_XML_name"

type="component_subclass_XML_name | ↵

primitive_subclass_XML_name" ↵

minOccurs="min_occurs" ↵
maxOccurs="max_occurs"/>

}

<xs:sequence>

</xs:complexType>

• block_documentation - The specific contents of the documentation element are beyond
the scope of this document at this time. It MAY be filled as standards developers best
determine at time of schema generation.

block_documentation ::= XML_string

5.6 Component

A CICA Component is represented in XSD with a complexType declaration. The
complexType declaration has a sequence content model as defined in the W3C XML Schema
Recommendation, Part 1. Each of the member elements of the sequence corresponds to a
Primitive.

CICA_component_definition ::=

<xs:complexType name="component_subclass_XML_name">

<xs:annotation>

<xs:documentation>

component_documentation

</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element ↵
name="component_member_constraint_usage_XML_name" ↵

type="primitive_subclass_XML_name" ↵

minOccurs="min_occurs" ↵
maxOccurs="max_occurs"/>

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 46

ASC X12

- WORKING DRAFT -

<xs:element ↵
name="component_member_constraint_usage_XML_name" ↵

type="primitive_subclass_XML_name" ↵

minOccurs="min_occurs" ↵
maxOccurs="max_occurs"/>

{

<xs:element ↵
name="component_member_constraint_usage_XML_name" ↵

type="primitive_subclass_XML_name" ↵

minOccurs="min_occurs" ↵
maxOccurs="max_occurs"/>

}

<xs:sequence>

</xs:complexType>

The following symbols are defined for this production:

• component_documentation - The specific contents of the documentation element are
beyond the scope of this document at this time. It MAY be filled as standards developers
best determine at time of schema generation

component_documentation ::= XML_string

• component_member_constraint_usage_XML_name –

component_member_constraint_usage_XML_name ::= XML_nmtoken

5.7 Primitives

Primitives are represented in Schema as a ComplexType. Each Primitive is derived from a
CCT. Each CCT content and supplementary component is represented by a SimpleType
definition with applicable restrictions (reference section 4.1.1). Each SimpleType will be
generated based on the XSD data type.

Table 5.1 lists the CICA data types and the corresponding schema language data types.

datatype ::= XSD_datatype , substituted according to table 5.7.1

CICA Data Type Schema Language datatype
string String
token Token
boolean Boolean
Integer Integer
decimal_number decimal_number
date Date
time Time
date_time dateTime

Table 5.7.1

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 47

ASC X12

- WORKING DRAFT -

Table 5.7.2 lists the CICA facets and the corresponding schema language facets.

CICA Facet Schema language facet
pattern Pattern
length Length
min_length minLength
max_length maxLength
min_inclusive minInclusive
max_exclusive maxExclusive
min_exclusive minExclusive
max_inclusive maxInclusive
total_digits totalDigits
fraction_digits fractionDigits
enumeration enumeration

Table 5.7.2

Each CCT Content Component is represented in schema as:

<xs:simpleType name = “content_component_type_XML_name”>

<xs:restriction base=”xs:XSD_datatype”>

 [{ constraining_facet }]

</xs:restriction>

</xs:simpleType>

Each CCT Supplementary Component is represented in schema as:

<xs:simpleType name = “supplementary_component_type_XML_name”>

<xs:restriction base=”xs:XSD_datatype”>

[{ constraining_facet }]

</xs:restriction>

</xs:simpleType>

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 48

ASC X12

- WORKING DRAFT -

The allowable constraining facets are represented as:

constraining_facet ::= <xs:pattern value=”pattern”> |

 <xs:length value=”length”> |

<xs:minLength value=”min_length”> |

<xs:maxLength value=”max_length”> |

<xs:minInclusive value=”min_inclusive”> |

<xs:maxInclusive value=”max_inclusive”> |

<xs:minExclusive value=”min_exclusive”> |

<xs:maxExclusive value=”max_exclusive”> |

<xs:enumeration value=”enumeration_value”>

The Primitive is represented in schema as a complexType referencing the simpleType
declarations above as allowed (reference section 4.1.1).

CICA_primitive_definition ::=

<xs:complexType name = “primitive_subclass_XML_name”>

<xs:annotation>

<xs:documentation>

primitive_documentation

</xs:documentation>

</xs:annotation>

<xs:simpleContent>

 <xs:extension base=”content_component_type_XML_name”>

<xs:attribute ↵
name=” supplementary_component_XML_name” ↵
type=”supplementary_component_type_XML_name/>

<--…-->

</xs:extension>

</xs:simpleContent>

</xs:complexType>

The following symbols are defined for this production:

• primitive_documentation - The specific contents of the documentation element are
beyond the scope of this document at this time. It MAY be filled as standards developers
best determine at time of schema generation

5.7.1 Primitive Example
A Primitive of CCT Amount that is restricted to US and EU dollars, with fractional
digits set to 2, and currencycode set to a min length of 1 and a max length of 2 would
be created as follows:

Eg. <paidamount currency="us" currencycode="xx">6.00</paidamount>

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 49

ASC X12

- WORKING DRAFT -

<xs:element name ="PaidAmount" type = "WOD_Amount1">

<xs:simpleType name = "Amount1_CurrencyID">

 <xs:restriction base = "xs:string">

 <xs:minLength value = "1"/>

 <xs:maxLength value = "2"/>

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name = "Amount1_CurrencyCodeListVersionID">

 <xs:restriction base = "xs:string">

 <xs:enumeration value="US">

 <xs:enumeration value="EU">

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name = "Amount1_Content">

 <xs:restriction base = "xs:decimal">

 <xs:fractionDigits value = "2"/>

 </xs:restriction>

</xs:simpleType>

<xs:complexType name ="Amount1">

 <xs:simpleContent>

 <xs:extension base="Amount1_Content">

 <xs:attribute name="currency" type=" ↵
Amount1_CurrencyID"/>

 <xs:attribute name="currencycode" type=" ↵
Amount1_CurrencyCodeListVersionID"/>

 </xs:extension>

</xs:simpleContent>

</xs:complexType>

5.8 Content Restriction
This subsection specifies the schema representation of CICA entities that are have a
content_restriction_flag (as specified in section 4.8.4) with a value of “X” or “A”, indicating
an exclusive OR or an inclusive OR.

This subsection applies to CICA Component, Block, Assembly, and Module, and modifies the
schema language representation specified in the previous sections. In general, all of the child
members of these are included in a schema language group element, with choice elements
applied to create appropriate choice content models.

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 50

ASC X12

- WORKING DRAFT -

The member elements of the construct are divided into two groups, restricted_members
containing the members that have a content_restriction_flag flag value of “X” or “A”, and
unrestricted_members that have a content_restriction_flag value of not present. The
schema language sequence element in each of the productions is replaced as shown in
sections 5.8.1 and 5.8.2. For both these sections, the unrestricted_members symbol is as
defined in the previous section, repeated here in a generalized form for all subject CICA
constructs.

unrestricted_members ::=

 <xs:element name="member_constraint_usage_XML_name" ↵

type="subclass_XML_name" ↵

minOccurs="min_occurs" ↵
maxOccurs="max_occurs"/>

{

<xs:element name="member_constraint_usage_XML_name" ↵

type="subclass_XML_name" ↵

minOccurs="min_occurs" ↵
maxOccurs="max_occurs"/>

}

member_constraint_usage_XML_name ::=

module_member_constraint_usage_XML_name |

assembly_member_constraint_usage_XML_name |

block_member_constraint_usage_XML_name

module_member_constraint_usage_XML_name ::= XML_nmtoken

subclass_XML_name ::=

assembly_subclass_XML_name |

block_subclass_XML_name |

component_subclass_XML_name |

primitive_subclass_XML_name

restricted_members ::= exclusive_or_members | inclusive_or_members

5.8.1 Exclusive OR

The schema language representation of the CICA Exclusive OR content restriction is shown below:

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 51

ASC X12

- WORKING DRAFT -

exclusive_or_members ::=

 <xs:choice>

<xs:element name="member_constraint_usage_XML_name" ↵
type="subclass_XML_name"/>

<xs:element name="member_constraint_usage_XML_name" ↵
type="subclass_XML_name"/>

{

<xs:element name="member_constraint_usage_XML_name" ↵
type="subclass_XML_name"/>

}

</xs:choice>

5.8.2 Inclusive OR

The schema language representation for the CICA inclusive OR content restriction is shown below, where
there are from 1 to n members subject to the restriction. These members are designated below as
member_1 through member_n . The order of the members as listed in the syntax independent CICA
representation defines a logical sequence used throughout the productions in this subsection.

In general, there is one parent choice element and n child sequence elements. For each of the n
member elements there is a sequence element that has that member element as the first child element,
with a min_occurs facet of 1, and all of the remaining elements in the sequence element having a
min_occurs facet value of zero. After this member of the logical sequence has appeared as the initial
child element of a sequence element, it is omitted from the remaining sequence elements.

inclusive_or_members ::=

<xs:choice>

<xs:sequence>

<xs:element name="member_1" ↵
type="subclass_XML_name"/>

<xs:element name="member_2" ↵

type="subclass_XML_name" ↵
minOccurs=”0”/>

…

<xs:element name="member_n” ↵

type="subclass_XML_name" ↵
minOccurs=”0”/>

</xs:sequence>

<xs:sequence>

<xs:element name="member_2" ↵
type="subclass_XML_name"/>

…

ASC X12.7 • RELEASE • 0.32 CICA & XML SYNTAX REPRESENTATION

APRIL 2004 52

ASC X12

- WORKING DRAFT -

<xs:element name="member_n” ↵

type="subclass_XML_name" ↵
minOccurs=”0”/>

</xs:sequence>

<xs:sequence>

<xs:element name="member_n” ↵
type="subclass_XML_name"/>

</xs:sequence>

</xs:choice>

NOTE: The ellipses (…) in this production represent a progression.
If there are only two members, the production is modified
appropriately to include only two sequence elements corresponding to
member_1 and member_2.

member_1 ::= member_constraint_usage_XML_name

member_2 ::= member_constraint_usage_XML_name

…

member_n ::= member_constraint_usage_XML_name

