ASC X12C/2002-61

ASC X12C Communications and Controls Subcommittee
Technical Report Type Il

ASC X12 REFERENCE MODEL:

CONTEXT INSPIRED COMPONENT
ARCHITECTURE (CICA)

October 2002

ABSTRACT

This Reference Model was motivated by the action item that X12's Communications and
Controls Subcommittee (X12C) took at the August 2001 XML Summit to develop "draft
design rules for ASC X12 XML Business Document development.” Acting on that action
item, X12C's EDI Architecture Task Group (X12C/TG3) determined that XML design rules
could not be developed without a basis for determining which XML features to use and how
to use them. Thus the group also set about developing a philosophical foundation and
putting forth some general design principles. This Reference Model covers those topics in
addition to a preliminary set of design rules.

The approach discussed herein is a work in progress. It is intended to be the foundation for
X12's future XML development, and will become the basis for CICA equivalents to the X12
syntax based X12.6 and X12.59, and XML Design Rules. It is consistent with the decisions
of X12's Steering Committee to develop its XML work within the ebXML framework.

CONTEXT INSPIRED COMPONENT ARCHITECTURE (CICA) ASC X12C-COMMUNICATIONS AND CONTROLS
REFERENCE MODEL SUBCOMMITTEE

DEDICATION

This document is dedicated to the memory of Dan Codman, whose leadership,
courage and personal strength made this work possible. His commitment to the
precursor of this document, his active support and personal contributions were
instrumental in shaping the final product. Dan had only one hat when it came to
matters of X12, in every sense was an inspiration and patriot. This dedication is our
way of raising our martini glasses one more time with Dan!

Copyright © 2002 DISA
Data Interchange Standards Association, Inc.
All rights reserved throughout the world.

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS CONTEXT INSPIRED COMPONENT ARCHITECTURE (CICA)

SUBCOMMITTEE

REFERENCE MODEL

TABLE OF CONTENTS

PrefaCe. .o \%
GENEIAL ... ————————— \%
Version and REIEASEuuiiiiiiie e e e \%
(070 0] 0 11=T 0] £ USSR \%

PUIPOSE AN SCOPE ...uveiiieeie it ie e e e s e st e e e e e e s te e e e e e s e st a e e e e e e s sassebeereeeesasntenneeeeeesannne AR
Ta 1o [0 ox i o] o PO P PP PPPTPPPTT Vi
DOCUMENT PUIMDOSE.......eeieieiiiiiiieieieteieeeeeeeeee e eee e et e e e e e e e eeeeeeeeeeeeeeeeeeeeeeeeeees VI
BIE= 10 =] AU T 1= o o = P SPSPRRRRRR VI
High Level DeSign PriNCIPIEScoiiiiiii et VIl
[T Tod (| £ 0] oL PSPPI Vil

L. INETOAUCHION oo 1

1.1 INErOTUCTION . ccciieiieeieeeeeeeeeeeee e 1

1.2 Support for Proprietary EffOrtS ...t 2

A & = TS0 0| £ o] 3

3. Message Design ArChitECIUIEccoiuiiiiiiiii e 5

3.1 The ViSiON = AN ANAIOGY ...eeeeiiiiieeiiiiie ettt ettt e e e bt s abbe e e s enees 5

3.2 From ViSion 10 ArCRItECIUIEuuviiiiiiiiiiiieiiietiteteteee et eeeeeeaeaeaeees 7

3.3. Context Inspired Component Architecture -- modularly flexible Smart Messages........... 9

3.4 Templates ANnd SIOLS.........uiiiiii e a e e s 12

3.5 IMOAUIES ...ttt ettt e et e e e sab et e e s sabe e e e ettt e e e bb e e e e abae e e e e e e 13

I 0 0 (=) SRR 15

3.7 DOCUMENES ...teeiieieee ittt e ettt e e e e st ettt e e e s e s s bbb ettt e e e e e ek bbb e et e e e s e annb e e e e e e e e e sannnnreeeeeees 16

R T N T=T =T 1 o[- PPPPRPPIRS 16

3.9 BIOCKS ... ettt sttt e e e a b b e e baeeaee e e 16

G O @] 1 3] o o] 0 [=T o 1 3PP PP PP 17

I I R o 10 T 11 U PRPOPPRPR 18

4. CompoNeNnt ArCHITECIUIEueiiiiiee it e e e eeeaea s 19

4.1 SEruCtUre RUIES OVEIVIEW.o iiiiei e e e aba b aanbnbnbsenbaenrnrsrnrnnes 19

4.2 Detailed SIrUCIUIE RUIESccuiiiiiiiiie ettt e e snraee e 20
B R @o 3 To 111 I PP TPPUPP 20
o ©7o o [1{o] 1TSS 20
e T @o] g To 111 o o I SO RTTPPUPRR 20
o ©o o 11 o) 1 RSSO 20
B ST @7o] g To 11 1T o I S PSP O PR PPPPPRR I 21
o I ©7o g o 1o 1 - R TR PUOTPRI 21
B A ©7o] 3o 11 1T o I A PO PP PPPUPPPP 21

4.3 Preliminary BIOCK STFUCTUIEcoiiiiiiiiiiiiiee ettt ettt 22

R - o Y =1 [T 22

I {10 1 [o] =PSRN 23

4.0 EVBINES it b s 24

o A o o7 110 o SRR 25

LT @ L1 g 1= T o T o T EST U= 27

5.1 What Constitutes a "Bullet” DOCUMENT?c.uuiiiiiiiee ittt 27

I = = 10| O V= £ ¢ o [T PP PUPTPPPPPPPPPRt 27

5.3 Two Roles for Same Instance Information: Explicit vs Referential Content................... 29

6. Metadata and DefiNitiONS........ .o bbb —a—————— 33

(ST R 1= Ty =T - | PP PP PPPPPPPPPPPPIRt 33

LI B Lo Lol U1 (1= o | T PP PPPPPPPPPPPPPPPPPPIR 33

OCTOBER 2002

CONTEXT INSPIRED COMPONENT ARCHITECTURE (CICA) ASC X12C-COMMUNICATIONS AND CONTROLS

REFERENCE MODEL SUBCOMMITTEE
L0 T =T 0 0T o] = (= PPN 35
LS A VT To [1= PP PPPPPPPPIRt 37
LR T AT =T 1 o] | PPN 39
ST ST =1 o Tod PP PP PP PPPTPPPPPRt 40
LI A 0] 1 0] o 0] 1 =] o | SO R SUPPPTPPPR 41
(ORI 110 V1 1AV TP PP PPPPPPPPPRt 42
6.9 User View of the Secretariat Databaseccccoeeiiiiiiiiiiiie e 42
7. XML SYNEAX DESION ...eeeiiiitiite ittt ettt et ae e e st e e s b e e e e anees
% R 1= T =T v | PP PPPPPPPPPRPPIRt

7.1.1 Scope and PUIMPOSEcccviiuiiieieeeiiiiiireee e e e
7.1.2 VersioNiNgcccooveeernnreenieeessreee e
7.1.3 Internationalization Features......................
7.1.4 Software Processing Considerations
7.1.5 General Naming CONVeNtioNScccvvveeeeeeiiiiinieeeees e
7.2 IMBSSAGES .. etteeiieee ettt ettt e e ettt e e e e e e e e et e e s et e e e e e
7.2.1 SCOPE AN PUIMPOSEeeiieeiiitieie et e ettt e et et e e e e e et e e e e e e s e e bbb b et e e e e s asatbaeseaeesansnnreennes
7.2.2 Naming CONVENLIONSvvvveiiiiieiieee e
7.2.3 Absence of Data and Related Considerations
7 @0 o 11 =] £ N
7.2.5 Elements vs Attributes
7.2.6 INGIMESPACES ...uuuuututuinintntntueueteueueneneueeenesesesesesesessssse s ss s s e s s e s e s e s 5 s s s e s e s e e e s s e e e e e e e e e e e e e e e eeeeeeee nan s

7.2.7 Communication Integrity - Envelope, Security, and Related Information
7.2.8 Processing Instructions
7.3 SCREIMA ..
7.3.1 Scope and Purpose
7.3.2 Schema Considerations for Namespaces, Nullability and Related Issues........................ 48
7.3.3 CONLENE MOUEIS ...ttt e e e e ettt e e e e e e et et e e e e e e anntbeeeaaeeeaann s ennes
0 T 1Y/ 0T
7.3.5 Local vs. Global Declarations
7.3.6 Use of Default/Fixed Values
7.3.7 Keys and Uniqueness
7.3.8 Annotations and Notations
7.3.9 Processing Instructions from Schema Level <APPINFO> ...

7.3.10 LeNGth .o

7.3. 11 NGIMESPACES ...veuvuvuunununnneueneuenenenenenesenssesesesesesesssssssssssssssesssesssee s e s s e e eeseeseeeeeeeeeeeeeeeeeeees nannnn
8. Summary of Proposed DeSIgN RUIESccceeiiiiiiiiiiiie e 59
9. CONMIOl SEIUCTUIES. ...eoieieiiee ittt ettt s e nr e s e e nnneennnee s 61
9.1 EXxternal Control SIMUCIUIEScveiiiiiiiee et 61
9.2 DocumMeNnt CONIOl STTUCTUIE.........uuiiiiiie et a e e e s e e e e e e e snneeeees 61
9.3 Internal CoNntrol STIUCTUIEScoiiiiiii e 61
ANNEX A: DEFINITIONS ..eiiieiiiee et e e e e et e e e e e e s e e e e e e e e enneees .63
Annex B: Examples from Finance INvVoice Pilot.............ccccoiiiiiiiiiieiece e 67
Annex C: Core Components Context CategOri€scieiruirieiriiiieeiiiie e 87
ANNEX D BACKGIOUNGcooiiiiiiiiiieeie ettt et e e e 93
Annex E: Framework Approaches for Implementing XML SyntaXcoccceeeevviveeeennnn 97
Annex F: Architectural Comparison of Other INitiativescccoeieee i, 101

IV OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS CONTEXT INSPIRED COMPONENT ARCHITECTURE (CICA)

SUBCOMMITTEE

REFERENCE MODEL

PREFACE

GENERAL

This document is a Technical Report Type Il, commonly referred to as a Reference Model. It
was developed by X12C, the Communications and Controls subcommittee.

This technical report was prepared under the guidance of the Accredited Standards
Committee (ASC) on Electronic Data Interchange, X12. Organized under the procedures of
the American National Standards Institute, ANSI ASC X12 was charged with the
development of transactions and structures for use in an Electronic Data Interchange (EDI)
environment. The Secretariat is the Data Interchange Standards Association, Inc. ANSI
ASC X12 has the following subcommittees:

e ASC X12A Education Administration

» ASC X12C Communications and Controls

 ASC X12F Finance

e ASC X12G Government

* ASC X12H Materials Management

* ASC X12I Transportation

* ASC X12J Technical Assessment

e ASC X12M Procurement/Distribution

¢ ASC X12N Insurance
In developing X12 technical reports, it is the aim of the X12 subcommittees to facilitate the
use and understanding of the standards developed by X12. These technical reports present

information that is not currently suitable for standards but that is intended to assist the users
of the standards.

VERSION AND RELEASE

This Reference Model is neither based on nor dependent on any particular version of the
ANSI ASC X12 Standards; it forms the foundation for X12's future work in XML.

This Reference Model represents the initial version of the architecture and related concepts.
It is anticipated that these will evolve with future versions of this document or with standards
that are based on it.

COMMENTS

Comments, questions, and suggestions for improvement of this document may be submitted
in writing to the Secretariat who will forward them to the appropriate ANSI ASC X12
Subcommittee. ASC XI2 Standards are available for purchase from the ASC XI2 Secretariat.

Director, Publications & Standards

ANSI ASC X12 Secretariat

Data Interchange Standards Association

7600 Leesburg Pike - Suite 430

Falls Church, Virginia 22043-2004

Phone: (703) 970-4488 FAX: (703) 970-4488

Publications Order Desk 1 (888) 363-2334

Email: publications@disa.org Internet: http://www.disa.org

OCTOBER 2002

CONTEXT INSPIRED COMPONENT ARCHITECTURE (CICA) ASC X12C-COMMUNICATIONS AND CONTROLS
REFERENCE MODEL SUBCOMMITTEE

VI OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS CONTEXT INSPIRED COMPONENT ARCHITECTURE (CICA)

SUBCOMMITTEE

REFERENCE MODEL

PURPOSE AND SCOPE

Introduction

The Extensible Markup Language (XML), developed by the World Wide Web Consortium
(W3C), is a specification designed for Web documents that enables the definition,
transmission, validation, and interpretation of data between applications and between
organizations. It is a freely available and widely transportable approach to well-controlled
data interchange that is open and accessible to the business community. The technology
itself allows the design of languages that suit particular needs and harmonious integration
into a general infrastructure that is extensible enough to meet requirements and adaptable
enough to incorporate emerging new technologies.

The extensibility of XML is the main advantage of this technology as well as its main
disadvantage. The ability to create custom-tailored markup languages can lead to a
proliferation of languages within business entities. This may not be critical in simple browser-
to-web-server solutions, but in business-to-business exchanges it is very undesirable and
costly. The development of document definition methodologies and XML design rules is of
paramount importance to stem the flow of divergent XML solutions and ensure smart and
efficient use of technology resources.

Much work has been done in the document definition and core components arena by ebXML,
ANSI ASC X12, and UN/CEFACT Work Groups. Every effort has been made to build on that
foundation. However, all of this work is ongoing and some issues of alignment with other
standards efforts have yet to be resolved. In its current state some areas of this report are
incomplete at the detail level. It is likely that the continuing work to address issues of
completeness and alignment will result in changes to some of the recommendations of this
report. The X12C Communications and Controls Subcommittee responsible for the
preparation of this report anticipates the release with the next year of ANSI ASC X12
Standards based upon the architectural concepts and XML syntax representation presented
in this report, and upon the maturing work of the other standards efforts.

The XML syntax design presented in this Reference Model is based on design decisions
reached through a process of issue identification, presentation of examples, and evaluation
of the pros and cons of each available action according to W3C approved specifications. It
provides a set of best practices that define the creation of XML representations of standard
business messages.

Document Purpose

The purpose of the document is to specify an approach to eBusiness messaging that:
1) links implementation with the standards, 2) enables cross industry differentiation, and 3)
supports industry needed 'quick’ solutions.

The scope of the document includes: a granularity model, an architecture, meta data for
storing architecture components and XML Syntax design with approaches to implementing
XML syntax.

Target Audience

The intended audience of this document is the X12 committee and others who are interested
in collaborating with X12 in developing XML schemas for business documents. However, the
broader initiative is aimed at a much larger audience. The X12 XML initiative is targeted at
every sector of the business community, from international conglomerates to small and

OCTOBER 2002

Vi

CONTEXT INSPIRED COMPONENT ARCHITECTURE (CICA) ASC X12C-COMMUNICATIONS AND CONTROLS
REFERENCE MODEL SUBCOMMITTEE

medium sized enterprises (SMEs) engaged in business-to-business (B2B), business-to-
consumer (B2C) and application-to-application (A2A) trade. With that audience in mind, the
X12 XML initiative is committed to developing and delivering products that will be used by all
trading partners interested in maximizing XML interoperability within and across trading
partner communities.

The motivation to develop common standards for document interchange is to enable
independent business entities to communicate with minimal additional cost and effort across
a wide range of business opportunities. One way organizations can gain advantages of
interoperability is by establishing a common set of “good” XML and XML Schema guidelines.
The current W3C XML specifications were created to satisfy a very wide range of diverse
applications and this is why there may be no single set of “good” guidelines on how best to
apply XML technology.

Although this document is created by X12 for its own use, it seeks a wider audience. While
standards developers comprise most of the people who attend X12 standards development
meetings, the majority of implementers may never participate in development of standards.
SMEs are largely unrepresented at standards development meetings but their needs can be
served by products resulting from those efforts. Industries or associations who choose not to
participate within the X12 environment can nevertheless follow these guidelines and position
themselves to meet interoperability demands of the next generation of e-business standards.

Design rule decisions presented here are intended to balance the needs of all users of the
standards. What seems like an advantageous decision from one viewpoint can be
disadvantageous from another, but the intent was to produce guidelines to serve the
common good.

High Level Design Principles

The following overall principles govern this design.

« Alignment with other standards efforts -- We shall align with other standards
efforts where possible and appropriate. Such efforts include but are not limited to
UN/CEFACT and OASIS ongoing ebXML work, World Wide Web Consortium,
and OASIS UBL.

» Simplicity -- We shall keep components, interactions, use of features, choices,
etc. to a reasonable minimum.

* Prescriptiveness -- This means that, for example, schemas shall be as specific
as possible for their particular intended usage, and not generalized. When
applied to schemas, this leads to more schemas, each with fewer optional
elements and with fairly tight validations. This means that schemas actually
used by anyone (rather than template schemas for starting points) would tend to
be analogous to an Implementation Guide of a transaction set rather than the full
standard definition of the transaction set.

« Limit Randomness -- When applied to processing an electronic business
document, this means that when the document is being processed there are a
limited number of variations that may occur in the data. It is related to optionality
and prescriptiveness. We shall keep randomness to a practical minimum.
NOTE: This provides a good philosophical basis for disallowing things like
substitution groups and the "ANY" content model when designing document
schemas.

Background

The Extensible Markup Language (XML) history and ebXML Business Process and Core
Components have been part of the development that has brought us to where we are today.
Annex D contains a more detailed review of each of these.

VI

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

1. INTRODUCTION

1.1 Introduction

This Technical Report addresses the semantic and syntactic representation of data
assembled into business messages. The semantic representation defines an overall
architectural model and refines the model to an abstract level of detail sufficient to guide the
message development process. The syntactic representation utilizes features of the target
syntax, while imposing semantic-to-syntax mapping rules and syntax constraints intended to
simplify the task of interfacing business messages to business information systems and
processes.

The large-scale structure of this architecture has seven discrete levels of granularity. Each
level builds on the levels below it in manners particular to their differing natures. The seven
levels are:

DOCUMENT
TEMPLATE
MODULE
ASSEMBLY
BLOCK
COMPONENT
PRIMITIVE

The first three levels, Document/Template/Module, provide features that promote
interoperability between national cross-industry standards and proprietary user communities.
The remaining four levels, Assembly/Block/Component/Primitive have characteristics
expressly designed around a rational semantic model for granularity. Specifications of
optionality and repetition are supported for all levels. Special attention has been paid to the
differing needs of senders and receivers in expressing the use of optionality and repetition
required by their particular business practices. ‘Documents’ are the implementable resulting
specifications, formed when the Slots in a Template are united with a set of Context specific
Modules.

The seven-level structure of this architecture is designed to provide useful granularity, while
at the same time preserving a useful semantic clarity.

Design rules come in two basic forms:

e Syntactic, and
e Semantic

An example of a syntactic design rule in X12 would be the basic data types, i.e.
alphanumeric, date, etc. An example of a semantic design rule in X12 would be the general
prohibition against duplication. These two aspects of design cannot stand alone. The
existing X12 design rules are a direct outgrowth of the particular X12 syntax and the history
that created it.

For the ASC X12 XML Reference Model, a semantic design approach has been selected,
breaking the EDI lexicon into units for re-use. This approach avoids some pitfalls that result
from a decomposition of EDI issues using only syntax as a guide.

OCTOBER 2002

XML DESIGN

ASC X12C-COMMUNICATIONS AND CONTROLS

REFERENCE MODEL SUBCOMMITTEE

1.2 Support for Proprietary Efforts

A primary requirement for this effort has been to meet a need first expressed at the first XML
Summit in August 2001. This was a desire for non-X12 participants to contribute and make
use of X12 work but in a manner that didn’t require an all-or-nothing commitment to either the
X12 process or X12 conclusions in every detail.

The top three layers, Document\Template\Module, directly support this need by allowing the
mixed use of standardized and proprietary data descriptions.

A proprietary Document can be constructed by combining ASC X12 standardized Templates
& Modules with proprietary Modules.

An external entity, corporation, organization, or individual can contribute proprietary Modules
for consideration by ASC X12. The level of conformance applied to these contributions would
be two-fold. First, does it meet the function and purpose expressed for a particular Slot in a
Template? Second, does it conform to the purely syntactic design rules established? A
“cross-industry usefulness” test would not be applied. A “duplication of existing item” test
would not be applied. Adherence to the X12 philosophical structuring of the bottom three
layers (Assembly, Block, Component) would not be required.

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

2. RESOURCES

The following documents provided resources for this document.

http://www.xfront.com/ - XML Schema Best Practices as maintained by Roger L. Costello

http://www.ibiblio.org/xml/ - Café Con Leche

http://mww.w3.org/XML — XML Schema Specifications

http://xml.coverpages.org/sgminew.html — Archive of Robin Cover's XML Cover Pages at
OASIS

http://www.ietf.org/rfc/rfc2119.txt?number=2119 — Internet Engineering Task Force Request
for Comments 2119

http://www.tibco.com/products/extensibility/resources/index_best.htm — Tibco's XML
Resources Center Best Practices

http://www.ebxml.org — ebXML Project

http://www.ebtwg.org — UN/CEFACT electronic Business Transitional Work Group

Ducket, Jon, Oliver Grffin, Stephen Mohr, Francis Norton, lan Stokes-Rees, Kevin Williams,
Kurt Cagle, Nikola Ozu, and Jeni Tennison; Professional XML Schemas; Wrox Press,
Birmingham UK, 2001

Dodds, Leigh, “Designing Schemas for Business to Business E-Commerce”,
http://www.xml.com/Ipt/a/2000/06/xmleurope/ecommerce.html

Gregory, Arofan T. “XML schema design for business-to-business e-commerce”, XML
Europe Conference, 2000

http://www.ebxml.org, Core Components Overview Vestion 1.05, May 10, 2001.

http://quickplace.hg.navy.mil/QuickPlace/navyxml/Main.nsf/057A71D114B95B0D85256 AF50
06CAD86/1921E59CBABDEE2D85256AFB00605CB3, Initial DON XML Developer’s Guide,
October 29, 2001

Walmsley, Priscilla; Definitive XML Schema; Prentice Hall PTR, 2001

OCTOBER 2002

XML DESIGN ASC X12C-COMMUNICATIONS AND CONTROLS
REFERENCE MODEL SUBCOMMITTEE

4 OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

3. MESSAGE ARCHITECTURE

Historically, two competing philosophies have driven eCommerce message design
philosophy, summarized as follows, each with advantages and disadvantages.

e ‘industry’ driven solutions, which at an industry level are easily implemented, but
jeopardize cross industry interoperability

* generic messages merging various industry specific needs together into a single
structure requiring supplemental implementation guides to identify what is
actually used in each specific implementation

This approach presents a new way of looking at the problem, combining the best features of
previous approaches into a single, powerful solution. An analogy is used to introduce the
solution, section 3.1. Section 3.2 introduces the Context Inspired Component Architecture,
CICA, along with its component parts. Finally, section 3.3 links the architecture back to the
components. Sections 3.4 — 3.11 detail the CICA architecture.

3.1 The Vision — An Analogy

Imagine a horizontal bar containing a set of seven (7) wheels, each wheel having eight (8)
surfaces, a “Wheel Diagram.” As the wheels are rotated on the horizontal bar, different
surfaces are revealed [as illustrated in Figure 1], and on each surface is a different word.

Figure 1la

Each wheel rotates independently, thus the number of potential combinations grows
exponentially with each additional wheel. With each possible combination of wheel surfaces,
a complete and meaningful sentence is constructed.

The Wheel Diagram works because of grammar. The logical placement of the wheels [noun
phrase + verb phrase], with each wheel representing a part of speech [article, adjective,
noun, verb, etc.], enables each combination to yield a meaningful sentence — some rather
silly, but still a sentence.

The size of eCommerce messaging is at a different level than a sentence, more the size of a
Story. Stories are classified by type, such as humor, tragedy, romance, etc. And as such,
conform to a conventional story pattern [boy meets girl, boy offends girl, boy wins girls heart];
each Phase in the Story Pattern has a corresponding Section in the Story. In the first
Section, boy meets girl, the actors are introduced and the main setting/context are
established. Normally, if this Story is related to a previous Story, the associations are made.

The main body of the Story plays out the details. The struggle and conflicts are identified,
events elaborated, places identified and described, minor characters are developed and tied
in, and the subject of the struggle is fully specified [who, what, when, where and why].

The ending is where boy gets girl or doesn't.

OCTOBER 2002

XML DESIGN ASC X12C-COMMUNICATIONS AND CONTROLS
REFERENCE MODEL SUBCOMMITTEE

Specific Stories are built around these general flows, with different characters, different
settings, and different adversities. A sequel will have some comment elements from a
previous story. Even seemingly unrelated stories share plenty of common components —
Disney comes to mind. The boy, he is strong and attractive, but has a conflict. The girl, she
is pretty, smart, unaware of her good looks, and unjustly is a target of a villain. Pretty might
mean blond hair, blue eyes, slim build, and fair complexion. Or, pretty might mean brown
hair, hazel eyes with a medium build.

Elements are used to group together set of related Details. Details are one of two forms,
identity information and characteristics [size, shape, color, etc.]. Encapsulating these
Elements are written prose [paragraphs and sentences].

Figure 1b depicts the relationships among the various Story objects. In the center is the
Story Pattern, which acts as a bridge between each Phase in the Story Pattern and the
corresponding Sections designed to fit into the Phase. The Story is the result of choosing a
Section for each Phase of the Story. Each Section is created from reusable
Elements/Details, ultimately identifying and describing characteristics of each Section object.
Depicted through the center of figure 1b is a faint Neutral Line that distinguishes between the
low level, reusable constructs [Elements, Details & ID/Characteristics] and the specific
detailed Section which is constructed.

While Stories are under development, it is common for a writer to have multiple sections that
fit in the same place in the Story, perhaps alternate endings. The Story Pattern appears on
the Neutral Line in Figure 1b because it acts as a bridge between the neutral and specific.
The Story Pattern itself is a neutral construct but it is the glue that ties the Sections and the
resulting Story together. Children’s electronic storybooks are developed following the same
method, except all of the outcomes are available for selection — providing variation.

Section J\Story

Neutral Li Story Pattern Neutral Line

Elements

Details

ID/Characteristic

Figure 1b

6 OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

This CICA architecture presents an intriguing alternative with the use of grammar, resulting in
a solution with the details necessary for implementation that comes with the industry specific
approach and the cross industry interoperability that comes from the generic approach. It
leads to a solution that meets the high-level objective, implementable messages, and strikes
a balance between the interoperability achieved through standardization and industry needs
for timely solutions — autonomy.

A typical business document (e.g., a Purchase Order) begins with an introductory section,
proceeds to one or more detail areas, which ‘tell’ the business story, and conclude with a
summary section. To simplify machine processing, the grammar used to represent business
information is much less flexible than a natural language, but it provides the same level of
control over the ‘flow’ of the information it conveys as do the chapters, paragraphs, and
sentences of a story.

And just as with a story ‘sequel’, business documents also have sequels, for example, a Ship
Notice. These business sequels may involve new parties to the story, such as the addition of
one or more ‘shipping’ parties in the Ship Notice. A commonly accepted vocabulary across
these disparate industries is required to interpret the semantic intent of the exchanged
messages. This is accomplished in eBusiness information exchange much as it is
accomplished in a natural language — a dictionary is developed and maintained of each of
the elements (‘words’) that are used to ‘tell’ the business story.

In general terms, grammar groups things together based on function in language. With the
use of grammar, a small set of rules and guidelines are very powerful as they apply to large
constructs. For example, rules and properties of verbs apply to all verbs. Natural language
has many rigorous rules associated with its lowest level grammar components, basically
starting with the sentence and moving downward.

The ‘story’ a business document communicates is organized into “who, what, when, where
and why.”

» Who answers which parties participate in the business transaction and the actors
involved in the exchange.

* What answers the primary subject or purpose of the message.
* When answers event/timing details.
* Where answers location details.

« Why is typically answered by the message type itself, along with accompanying
reference information.

3.2 From Vision to Architecture

Each business message delivers data that organizations use to conduct business with their
trading partners. And as the vision described in the previous section illustrates, e-business
messages, like stories, can follow patterns that allow for different combinations of reusable
elements and details. Businesses first need, however, to determine the pattern and identify
the elements in specific and predictable ways.

As shown in figure 1b, the story pattern brings together reusable elements, details (those
below the neutral line) that provide the basic facts — the who, what, where, when, and why of
the story. In some cases, where the story is part of a series or contains a complex plot, the
story pattern may apply to a specific section of a story, with an entire story made up of one or
more of these sections (found above the neutral line in the diagram).

Likewise, business messages contain reusable pieces, details, (identity and characteristics).
While stories follow a pattern, business messages follow a template that requires certain
pieces of information to give the basic facts: the who, what, where, when, and why of the
message. The template has a slot for each of these elements, with the specified (and often

OCTOBER 2002

-

XML DESIGN

ASC X12C-COMMUNICATIONS AND CONTROLS

REFERENCE MODEL SUBCOMMITTEE

reusable) element fitting into that slot. The message template reflects a set of conditions
determined by business processes, as shown in figure 2a.

Both stories and business messages will differ from one set of circumstances to another, and
often in predictable ways. While stories in popular cinema may have common themes
across cultures and generations, they will differ in specifics from film script to another. The
differences in these stories are determined by their context, such as the target audience,
country, studio, and year of release.

Event Invoice

Figure 2a

The same can be said for business messages. Many business messages may exhibit
similar patterns, but the specific details in the message will reflect their specific
circumstances, such as the industries, nationalities, business processes, and legal
constraints involved in the transactions. In business messages, these circumstances are
known as context, and can determine much of the terminology and meaning in messages.

An example can illustrate how the template works. An invoice triggered by a discrete event
such as an order or shipment of goods can have several pieces of information, as
determined by the business process [figure 2a]:

» Events that triggered the invoice

» ldentity of the buyer

» |dentity of the seller

» |dentity and description of the product

e Set of charges and terms
Each of these pieces of information in practice is satisfied with several discrete pieces of
information, and would likely be called something else when used within an industry, very

much like the story pattern. These are the Slots in the template.. But add context, and the
slots get filled with specific data, meaningful to the trading partners [figure 2b].

Fiaure 2b

Another important feature of the architecture is its ability to accommodate differences in
business practices, while still aligning them with a common process identified in the template.
In our invoice example, the set of charges and terms will vary when having to accommodate

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

sales taxes in various jurisdictions. Or pricing can vary depending on the inclusion of
shipping and insurance in the prices.

These individual and often reusable data are equivalent to the story elements and details,
and as shown in Figure 3, sit below the template and neutral line of the message. The
smallest units are called primitives that combine to make up components. Components, in
turn, specify the identities or characteristics of the basic data in messages, called blocks.
Blocks specify individual parties, resources, events, locations or conditions — the nouns in a
message. Assemblies consist of groups of blocks that can be reused in different
transactions.

Above the neutral line, one finds modules that are sections of documents and contain one or
more assemblies or blocks. Modules are loosely associated with templates, and used with
templates under certain context conditions. They can fill the slots in a template. Full
documents are implementable business messages that are derived from templates and
linked to modules.

The architecture thus provides a structure for predictability, while offering flexibility to
accommodate differences in business practice and terminology across industries or in
different locales. The basic template provides agreement at a level of abstraction that
encourages cross-industry sharing of business concepts and processes. The architecture
also allows for differences among industries in business processes and terminology, but
again in predictable and reusable ways.

3.3 Context Inspired Component Architecture -- modularly
flexible Smart Messages

Overview

The Context Inspired Component Architecture, (“CICA”), is based on the results of many
years of critical analysis within the EDI/E-Business standardization efforts. This architecture
leverages the best ideas to date in e-Business development, and applies new semantic rules
and levels of abstraction.

The architecture of CICA includes seven (7) layers, the relationship amongst the layers is as
illustrated in Figure 3 (next page).

The Template is conceptually the focal point of the architecture, bridging between Neutral
constructs below the line, and Implementable constructs above the line, as shown in figure 3.
The Template contains a set of Slots that specify the high level content requirements for the
Business Document. The Template is linked with Modules, and the relationship is
conditional in that the Module is only used when Context conditions are met.

The Module is physically separate from the Template, but associated with the template on a
Context case basis, this association relationship is depicted in figure 3 with dashed lines. In
other words, the Module is loosely associated with the Template, and only bound with the
Template when a predetermined condition is met, Context. Modules answer, at the
document level, Who, What, When, Where or Why. Modules are made up of one or more
Assemblies and/or Blocks.

The Document is the user implementable business document, where the Template is joined
with the context specific Modules. The Document is derivable from the Template, linked with
Modules. This relationship is depicted in figure 3 with an evenly dashed line, linking the
Document with the Template.

Assemblies are reusable groupings of nouns, called Blocks in this architecture. Unlike
Modules, Assemblies are usage independent and as such are highly reusable. An example

OCTOBER 2002

9

XML DESIGN ASC X12C-COMMUNICATIONS AND CONTROLS
REFERENCE MODEL SUBCOMMITTEE

of an Assembly is Party + a Location. As these are two nouns, they are larger than a Block,
but since they are only linking a Party + Location, they don't convey how they are being used
(a Buyer can be created out of our Party + Location Assembly). However, at the Assembly
level, Party + Location contains nho mention of the many ways it can be used --- therefore it is

neutral.
Module /Toc‘ument
\ A
Neutral Lin | Template |7 : Neutral Line
Assembly \
Block
Component
Primitive
Figure 3

Blocks are reusable Component groupings, constrained in size to specify a single noun
[Party, Resource, Event, Location or Condition]. Like assemblies, Blocks are highly reusable
because they are independent of usage -- neutral. An example of a Block is a Person Party,
which can be used in Modules to specify Students, Patients, Criminals, etc.

Components are neutral and are used to construct Blocks. Components specify either
identity information or characteristics for the given Block.

Primitives are subordinate to the Component. Each Component contains one or more
Primitives, based on representation terms. A Component would be comprised on more than
one Primitive in situations where it takes more than one Primitive to communicate a business
concept. For example, if the goal is to communicate 10 ounces and to do this requires
specifying the value and the unit of measure, this would be a case where multiple Primitives
are used to specify a Component.

Neutral Line signifies the nature division between low level, generally reusable constructs,
such as Assemblies and Blocks, and those constructs, which are specific for a use and
therefore not neutral.

Smart Messages

The foundation of the CICA architecture is the Business Document Template, (“Template”).
Templates function like grammar in so far as Templates specify the message in abstract
terms. From this grammar Template, Documents are built from reusable detailed contents --
Modules. The links between the Template and the Documents are bridged using a
constrained vocabulary specifying usage — Context. This entire approach yields Smart
Messages.

10 OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

A Templates contains Module Slots, (“Slots”), placeholders which contain no detailed
component information, only a detailed description for the sub-set of the Document. For
example (see figure 4), an Invoice Template will contain Slots for Buyer, Seller, Products,
and Charges. Each industry or business sector might have different terminology and/or
difference detailed information for the Buyer, but the place in the Message for that
information is the Slot for Buyer. The Slot, by design, is cross industry. In general terms, the
Slot is designed to specify a primary element of the Document, that is, a principle Party,
Location, Event, Resource of the Document.

Product Charaes

L N h, N h, N
P5 C1 P8 C3 P1 C4
Doc 1 Doc 2 Doc 3
Figure 4

Modules are built to be placed in Slots. Modules contain details required, data elements, to
specify the construct determined by the Slot. More than a single Module can be defined for a
single Slot, although it is cautioned that new Modules should only be defined when existing
Modules are insufficient for the business process.

The CICA architecture achieves flexible modularity with this detachment between the Slot
and the Modules. Context, which specifies a set of business conditions, is used to link the
appropriate Module with a Slot. This serves as a foundation for Modularly flexible

OCTOBER 2002

11

XML DESIGN

ASC X12C-COMMUNICATIONS AND CONTROLS

REFERENCE MODEL SUBCOMMITTEE

messaging. For each Slot, there are one or more Modules, the use of which is determined
by a specific pre-established context. For example, consider Figure 4, which depicts a
Template with two (2) slots in the header, and two (2) slots in the detail, as shown in the top
of the figure. If the cube shaped Product Slot in the detail section of the Template represents
Product specification, there are three (3) sector specific Modules that fit into the Slot, each of
which is used according to the context that specifies its use. For each Slot, one or more
Modules are created in order to fulfill the purpose specified by the Slot. In order to generate
a Business Document, Context is specified for each Slot and the requisite links are drawn
upon to compile the Context Specific Business Document, shown in the lower portion of
figure 4.

3.4 Templates and Slots

Overview

_ _ Invoice EventTemplate
Templates are the focal point construct in

the architecture, and play a pivotal role
bridging between neutral and specific in
achieving modularly flexible messages.
Modularly flexible messages are an
important innovation in that the resulting
Business Document is semantically
concise, yet the Template provides a
mechanism through Module substitution for
flexibility. The result is to accomplish both
of which would otherwise be considered
mutually exclusive objectives — flexibility &
autonomy for responsive industry solutions
and cross industry interoperability, all with
semantically concise messages.

header

summary

Templates are established for each bus-
iness process specific use of a message,
figure 5. As an example, there are two
fundamental invoicing models, event and Figure 5

time based. Event based procurement

involves a buyer and seller, where the buyer places a specific Order with the seller, the seller
delivers in accordance with the Order, and the buyer is Invoiced in accordance with that
delivery event. Examples of this include catalog orders, trips to the store, traditional
healthcare plans, etc. In contrast, time based procurement involves an arrangement
whereby the buyer and seller have an ongoing relationship, the goods/services are routinely
made available and used as desired, and invoicing occurs according to a time schedule. This
Invoicing style includes any statement/time based invoicing methods, specifically: utilities,
credit card, telephone, etc.

Contents

Shown in Figure 5 is a Template. A Template is divided into three logical areas, “Area”:
header, detail and summary. These subdivisions have semantic significance in that header
information applies to the entire Business Document and specifies the business context and
parties to the business exchange, the detail contains the subject of the message, and the
summary contains summarized information about the detail [use of this section is generally
discouraged].

Business documents also need to explicitly specify the relationships among their
components, to reflect the appropriate structure of those components during assembly.
Knowing how the pieces fit together in the overall structure encourages reuse of the
components in other documents or processes. In some cases the structure will be simple,

12

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

but where documents represent a large volume of different items, or multiple references (e.g.
a ship notice containing items requested in separate purchase orders), the structure can
easily become more complex. The Template specifies this logical arrangement of
information.

Within each Area are zero or more Slots shown in figure 5 with wire frame geometric shapes.
Slots, depicted in Figure 6 by various 3D wire frame shapes, identify in abstract terms the
logical composition of the message at the business process level. Slots are absolutely
specific in terms of the logical business purpose that they identify. The Slots are abstract in
that they use a neutral term, such as Seller, although various industries/sectors might use
Supplier or Provider. The abstraction is in harmonized, generally recognized terms and
independent of industry or sector specific terminology. This aids in the reuse of the
Templates, which are developed around Business Process requirements.

Slots do not contain contents, in other words data elements. They serve as a logical break

between the purpose of information, Slot, and the detailed Context specific contents,
Modules.

Slot

Types

Who What Where When
(Person (Subject: person, (P|ace, physica| (Pact nrecent nr fittiire
I0Oraanjzainn?\ place, thing or ar lanjrall
ovant?)
Figure 6

Slots are designed around the Business Document need to express the Who, What, When
and Where, [as shown in Figure 6], which when combined detail a Business Document.
Each Slot use is to specify a single one of the Who, What, When or Where, at the Business
Process level. This subject will be dealt with more in the following sections.

3.5 Modules

Overview

Modules specify details in accordance with the abstract business purpose identified by the
Slots in the Template. In general, one or more Modules are defined for each Slot identified in
the Template, although it is possible that a single Module can fill more than one Slot in a
Template. It is expected that some of the Slots will have only one or a small number
possible Modules, such as the case in the Invoice case with the Buyer or Seller Slots. In
other cases, there could potentially be many different modules, based on perhaps business
sectors.

Figure 3, shown earlier, illustrates a situation where multiple Modules are associated with a
single Slot. On the left is a set of Modules that can be plugged into the Slot. Each module in
the example has some commonality — shown by the shared red filled box. This commonality

OCTOBER 2002

13

XML DESIGN

ASC X12C-COMMUNICATIONS AND CONTROLS

REFERENCE MODEL SUBCOMMITTEE

in some compositions is not a requirement of peer modules, but what is certain is that there
is different composition. Therefore, amongst various industry sectors there are differences in
information requirements for modules, e.g. line goods item. The links between the Slots and
Modules, shown with arrows, are established for a context. What is meant by Context is a
specific business circumstance that unambiguously links the specific Module to the Module
Slot in the Template. Context is specified in a prescribed manner, described in 3.6.

At the Template level, for each of the Slots, Context specific links are made between Slots
and Modules. Modules can be reused many times across Templates, whether the templates
in which the modules are used are:

» Peer Templates: Templates that serve the same general business function, such
as Invoice.

» Same Business Process: Templates used within the same business process. It
is expected that a single Module could appear in multiple or all Templates used
in the business process.

* Same Sector: Modules that are sector specific, such as ones specifying the
sector's product/service, could be used in a variety of business processes in
which sector members participate.

Types

Modules, like Slots, are formed around the same semantically motivated boundaries.
Grammatically speaking, like Slots, Modules specify either a Who, What, When, or Where,
as illustrated in Figure 7. The Slot identifies the need for a Module in terms of the business
process purpose or usage, specified in abstract terms. The Module supplies a set of details
responding to the prescribed purpose, the Slot.

Module
Types

Yy

Who What Where When
(Person (The Subject, (Place, (past, present or
/Organization?) which can be a physical or future)
person, place, logical)

thing or event)
Figure 7

Contents

Modules are made up of reusable constructs, which are either Assemblies or Blocks. A
Module can be as small as that being constructed from a single Block, or as complex as
constructed from a set of Blocks and Assemblies.

Placing a Block or Assembly into a Module gives it a semantic purpose. Modules can be
complex enough to require the use of multiple Blocks and Assemblies, although the primary
purpose is singular. For example, within a Vital Records scenario there exists the need to
specify a party, whom has died, a decedent. The decedent is the Module, as shown in

14

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

Figure 8, but peripheral to the decedent are the birth/parents, last address, spouse/marriage,
and adoption/parents, etc. These are descriptive details about the decedent that involves
parties, locations, events, etc.

".
‘0
‘0
"A .
‘ Characteristics :
Lz “
L4 *

L4

: . “0
K Identity .
4 *
L 2 *
L4 *
Resource

Figure 8

3.6. Context
Overview

Separation between Template with Slots, and Modules, is fundamental to accomplishing
modular flexibility. Hand in hand with the separation is the need to predictably establish the
link. This is the role of Context.

Context is the set of descriptors that quantify the ‘business circumstances’ under which a
Module is used in a Slot. This is most easily explained with an example.

In our Invoice example [figure 2b], the Template contains a number of Slots, one for
Document Event. Two Document Event Modules have been identified, shown in the
illustration on the wheel surfaces. The first is the default InvoiceDocHdr. The second,
InvoiceAdminDocHdr contains additional reference information used in dealings with the US
Government, and could have some other applications. So, the link between the Slot and the
Modules are different for the two different Modules, and Context is used to explicitly describe
when each Module is to be used.

Types

In order to ensure consistency, Context must be analogous to a highly constrained language,
where there are a set of predetermined parts of speech, context categories, and a
predetermined set of values. This ensures that if your goal is say Ocean Transportation,
there is one and only one way to say it, avoiding ambiguity.

In keeping with our goal to align with the ebXML Core Component work, their section 6.2.2 of
the current technical specification, specifies categories of Context, or types. The contents
are contained in Annex C of this document.

The URL for the full document is

http://www.unece.org/cefact/ebxml/ebXML CCTS Partl V1-8.pdf,

OCTOBER 2002

15

XML DESIGN ASC X12C-COMMUNICATIONS AND CONTROLS
REFERENCE MODEL SUBCOMMITTEE

Contents

A comprehensive list of values must be specified for each context category. For each
context category, the ebXML CC specification has identified one or more available sources.
These, in addition to X12 selection, are documented in Annex C of this document.

3.7 Documents
Overview

Documents are the unit to which transformation rules will be applied in order to generate the
XML Schema. These resulting Documents are what are considered “bullet” documents, in
that they are semantically concise for implementation.

Documents are produced when Context is applied to the Slots in a Template, given the
Context links between Modules and Slots. For example, in Invoicing, there is a Slot for
Document Event, linked with two Modules. Thus, at the Slot level there is a decision that
must be made to select the proper link, specifying Context. Once the Context for each Slot is
specified, the Template is joined with a specific set of Modules — a Document.

The Document is covered in more detail in the Invoice Example, detailed in Annex B.

3.8 Assemblies
Overview

Assemblies are a construct used to create reusable groupings of Blocks. Like Blocks, they
are independent of usage, neutral, and fit between Modules and Blocks. Blocks, which are
detailed in the following section, are semantically limited to specify a single Party,
Location/Place, Resource, Event. Various groupings of these constructs can be very
convenient, in order to specify structure or for reuse purposes. For example, party + location
are commonly used constructs and an Assembly is a convenient means for managing this
reuse.

In our Invoice example, Buyer is a Slot, and a set of Modules is produced to specify the
various Context specific contents for Buyer. One such Buyer Module contains six (6) parties:
the Buyer, the Buyer Contact, the Paying party, the Paying party Contact, the Ship-to party,
and the Ship-to party Contact. In each case, the Contact party has the same composition.
This is a candidate for an Assembly.

Types

Assemblies will typically have a primary type. In the example above using party + location,
the purpose of the assembly is to specify a Party which has a location. While location
information is supplied, the primary purpose is to specify the Party.

Contents

Assemblies are created out of one or more Blocks and/or Assembilies.

3.9 Blocks
Overview

Blocks are constructs created to specify a single Party, Resource, Event, Location or
Purpose. Blocks are concise units in that they specify in detail and with all that applies to the
Identification and Characteristics of the object being specified.

16 OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

Types

Blocks specify a single noun, i.e., a Party, Location, Resource or Event [as shown in Fig. 9].

Identity
Party <
Characteristics
Identity
Resource <
Characteristics
Blocks)
Identity
1/
Event I~~~
Characteristics
Identity
Location <
Characteristics

Figure 9

The single noun property of Blocks is a critical element of CICA's granularity model. This
property enables logic to exist amongst blocks and will be exploited extensively in the
architecture. This is a foundation required to achieve modular flexibility.

Contents

Each Block contains Identity information that varies depending on the type of Block, and
optionally may have Characteristics. Anything less is not a Block; anything more must be an
Assembly if neutral, or a Module is semantically specific.

3.10 Components
Overview

Components are the next to the lowest level contained within this architecture. Components,
like Blocks, are formed based on the need for a physical arrangement of information. For
example, given two types of Parties, an individual and an organization, the identity
information required for the two types of Parties is significantly different; therefore the
components used to specify identity are different. The need for different components results
in the need for separate Blocks.

A component may require more than one discrete piece of information to fully specify its

semantics. An example might be a unit of measure and a measurement value. Primitives
are the children of components that contain this information.

Types
Components are used to specify one of two types of information, Identity or Characteristics.

Identity information is going to vary based on the Block type. The details required to identify
a person are dramatically different from those details used to identify an event.

OCTOBER 2002

17

XML DESIGN

ASC X12C-COMMUNICATIONS AND CONTROLS

REFERENCE MODEL SUBCOMMITTEE

Characteristics provide descriptive information, such as physical or demographic details. To
make a comparison to natural language, characteristics can be compared to adjectives.
Typically, characteristics are one of two forms, 1) have a companion piece specified, such as
in the case of unit of measure or, 2) are one of a finite list. Some examples of characteristics
are height, weight, hair color, class of service, property feature or quality, etc. Primitives
have been defined to establish linkages between peer semantics, when represented
differently physically.

In the interest of alignment with Core Components, the types of components are aligned.
The types are taken from table 6-1 in the current ebXML specification,
http://www.unece.org/cefact/ebxml/ebXML_CCTS Partl V1-8.pdf, and included in this
document in Annex C.

3.11 Primitives

Overview

Primitives occupy the lowest level of the architecture. As noted in the discussion of
components, more than one discrete piece of data may be required to fully convey the
semantics of a component. The primitives within a component provide these discrete pieces
of data.

Types

Since primitives can be classified as atomic or scalar data, they have data types in the
conventional sense. Although it is not within the scope of this reference model to specify the
actual data types or their correlation with any particular syntax, the set of types would most
likely include:

e Alphanumeric

¢ Real (or decimal)

e Integer

e Time (including date, time, and datetime)
* Coded item with associated code list

Primitives are akin to the value and supplementary components of the ebXML Core
Component model.

18

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

4. COMPONENT ARCHITECTURE

Given the number of industries, organizations and business processes that are involved in
making eBusiness standards — there is no shortage in complexity. In this environment, even
making the determination that two things are the same is not as straightforward as it sounds.
And when they are not the same, how many ways can they be related? And what
conclusions and knowledge can be drawn from structural relationships?

This effort relies heavily on a strong semantic foundation for all decisions. Integral with the
strong semantic foundation is the need for quantifiable indicators for making decisions,
including the ability to quantify precisely the ways in which two things might be considered
related and at what point they are to be considered the same.

From these tests, rules can be formulated to reinforce these conclusions.

4.1 Structure Rules Overview

There are three tests that can be applied when comparing two candidate information
constructs to determine the level to which they are related. These are Form, Fit and
Function, and they are taken from the Parts world where they are used to determine when a
new part number needs to be assigned. These tests, while the same for each CICA
construct, have slightly different implications depending on the semantic abstraction of the
construct. Modules, the most semantically specific construct, are more sensitive to purpose
and usage and a little less impacted by structure. In contrast, Blocks contain abstract
semantics and are affected more by structure. These details effect how to apply these tests
and the resulting rules. The general concepts are presented below.

For eBusiness considerations, Form, Fit and Function are defined as follows:

FORM: Physical — the structure, contents and components of the information structures
being specified. For example, parts have names and so do people. People have first,
middle and last names, whereas a part has a single name, part name. The difference in
Form makes these two types of names different. In contrast, you might have a Student First
Name and Student Last Name, compared with a Patient First Name and Patient Last Name.
Form-wise, these two examples are the same.

FIT: Identity-Meaning-Specificity — Two organizations or industries that share the common
element named Part Number have reason to believe that there is some commonality.
Sometimes two uses of an identically named item do not provide the same level of specificity,
and therefore these items are not the same thing. In ebXML, a case using a Vehicle
Identification Number, “VIN” was used. Different organizations use the VIN, but they may be
referring to a different subset of sub-components. Each subsection of the component parts
of the VIN, for the same vehicle, is different information. Can all of these different subsets of
the same base number all be called VIN — no! Other examples are found with Part Number,
with different levels of specificity found with a construct called Part Number. For these to be
considered the same, they must specify the same level of specificity.

FUNCTION: Purpose or how used. — When comparing two information constructs, such as
Product, there is a common purpose or usage — which motivates treating them as ‘the same’,
even though the detail used to specify various Products can vary widely. In some cases, the
various Product descriptions are similar in form, but in many instances, this is not the case.
Efforts to merge dissimilar definitions results in ambiguity, which later needs to be
disambiguated. In the CICA architecture, through the use of abstract layers and links, these
Functionally related constructs are associated, without imposing ambiguous merging. The
product specification for a Widget is dramatically different from the product specification for
Visiting Healthcare services.

OCTOBER 2002

19

XML DESIGN

ASC X12C-COMMUNICATIONS AND CONTROLS

REFERENCE MODEL SUBCOMMITTEE

4.2 Detailed Structure Rules

The levels of equality that are true determines how closely related two information constructs
are. Consider the following:

4.2.1 Condition 1:

FORM = YES
FIT =YES
FUNCTION = YES

When all three tests are true, then with 100% certainty we can determine that the two are the
same thing, the constructs are semantically equal. Examples of this situation are Shipper,
Seller, or Supplier. These are different industry-specific terms for a semantically equivalent
party playing a role. Frequently the descriptive details are exactly the same; and when that
case is true, they are semantic equals in every sense.

4.2.2 Condition 2:

FORM = NO
FIT =NO
FUNCTION = YES

When equality is based on function alone, the two information constructs appear below a
common parent structure. For example, in the travel industry you have rooms in hotels and
passenger seats on flights. Although they are specified with different data elements and are
called different things, they are used in the same manner in a business process/message.
Thus, the two appear beneath a common parent [at some level], possibly human service
products.

4.2.3 Condition 3;

FORM = YES
FIT =NO
FUNCTION = NO

This case is very common in EDI today, and is well supported. The X12 N1 loop specifies
the name, ID and address of any party, person or organization. The fundamental difference is
that in the CICA architecture, Blocks are specified for the various data arrangements
[different where a party is an individual versus an organization]. Further, this is independent
of whether the construct can represent many purposes, which is the expected case.
Therefore, in terms of Blocks, it is expected to have a single block [Party with First, Middle
and Last Name] used for many specific parties: Passenger, Patient, or Student.

4.2.4 Condition 4:

FORM = NO
FIT =YES
FUNCTION = NO

This is the case where an information construct serves the same semantics in two different
settings/business conditions, but it is used differently and has different components.

20

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN
SUBCOMMITTEE REFERENCE MODEL

4.2.5 Condition 5;

FORM = YES

FIT =NO

FUNCTION = YES

In the automotive industry, Part Number is used to specify the desired product.

Manufacturer A has a significant digit part number which is really a composite of several
identifiers: base + change number + color number + location on vehicle + etc.

Manufacturer B and others have a part number too, but it refers only to the base. Separate
additional values are required which include: change number, color number, location on
vehicle, etc.

Both of these are related in that they are used to specify THE part, but they are NOT
semantically equal. They do not provide the same level of specificity. Therefore, although
they are used for the same base purpose, they cannot be used interchangeably and
therefore, they are not the same.

4.2.6 Condition 6;

FORM = YES
FIT =YES
FUNCTION = NO

This case happens primarily when multiple business processes are involved. Consider a
scenario where a Doctor is treating Patients versus a scenario of a business process where
a Clinic is communicating its Assets — its staff. In both cases the form and fit are the same,
but the function is different. It is unclear what structural implications this case has.

4.2.7 Condition 7:

FORM = NO
FIT =YES
FUNCTION = YES

In this case there is a difference in form, as is the case with Person Name versus
Organization Name. Both cases are serving the function to specify the Party. Last Name
does not equal Organization Name, because they don't deliver the same level of precision.
In order to achieve the same level of “Fit", it is Organization Name = Last Name + Middle
Name + First Name. Fit ensures semantic equality.

OCTOBER 2002 21

XML DESIGN

ASC X12C-COMMUNICATIONS AND CONTROLS

REFERENCE MODEL SUBCOMMITTEE

4.3 Preliminary Block Structures

Applying these rules and the desire to illustrate the concepts presented in Section 3 has lead
to an initial set of Block constructs that are at a level where we are accustomed to operating
in the EDI world. The usage-independent nature of Blocks makes them inherently cross
industry.

Blocks contain two types of information, :
Identity and Characteristics. Identity { Identity

information is used to specify the unique, Block
instance identity of the Block. The content
is dependent on the type of Block. This will
be examined in more detail in a subsequent Figure 11
section. Characteristic information is

descriptive information, which is typically in one of two forms, pick-list or value plus unit of
measure. Examples include: length, width, height, weight, eye color, temperature, etc.

Characteristics

4.4 Party Blocks

The party answers a single who question. Parties in a business process and message can
be individuals or organizations, or combinations of the two. In some cases the parties are
also actors. For example, many purchasing applications need only buyer and seller
organizations as actors, optionally identifying contact persons. With other processes, the
party becomes the subject of the message, e.g. health care, education, or law enforcement.
In these latter cases, the data represented in the process and subsequent messages
become more detailed. The detail manifests itself in one of two ways, first with characteristic
details [height, weight, eye color, etc.] conveyed at the Block level and secondly, details that
need to be associated with the party but are not intrinsic to the party. For example, other
parties, events, locations, etc. might need to be associated with a base party block in order to
construct a complex structure. This is done in an abstract manner with Assemblies and a
context specific manner with Modules. The key point is that these complex needs, beyond
those of Characteristics, are accomplished with other blocks.

Person

Individual

Person
Party Working

. Identity

. Characteristic
- Corporation or

Business

Organization

Regulatory
Organization,

Figure 12

22

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

This approach allows Blocks to focus on what is directly attributable to a Block, usage
independence.

The fundamental difference between Role Player and Subject parties is that Role Players
tend to have Identification information, but not to have Characteristics. Therefore, any Party
can be a Role Player.

Based on the set of structure rules detailed in Section 4.2, the top-level breakdown for Party
is depicted in Figure 12. Differences in the Identity and Characteristics ranges specifically
prescribe this breakdown. Identity information for an Organization includes a Name and an
Organization ID number. However, there is a fundamental difference between Corporations/
Businesses and Regulatory Organizations, leading to a further breakdown subordinate to that
of Organization. The Name probably doesn't vary, but the organization might have a number
of ID numbers depending on context. However, they are all ID numbers that are suitable and
appropriate for the identification of an organization.

Individuals, having First, Middle, Last Names as part of their Identity, clearly are different
from Organizations. Further, as Individuals we are managed and served within our
environments. Between 9:00 a.m. and 5:00 p.m., Parties take on an alter ego by assuming
roles, such as Employees or Students. This calls for additional identity information: titles,
status, etc. If this is the case, there are a couple of individual Blocks, that of Person and
Person Working.

4.5 Resource

Economic resources answer the what question in a business document. As Figure 13
shows, resources break down into products and financial instruments. Products are the
goods and services of value generated by companies for their customers, while the financial
instruments — various forms of cash or credit — are the means by which the customers pay
for those goods and services.

Goods
Product
Services
Economic
resource
Cash
Financial
instrument
Credit
Figure 13

OCTOBER 2002

23

XML DESIGN

REFERENCE MODEL

ASC X12C-COMMUNICATIONS AND CONTROLS

SUBCOMMITTEE

4.6 Events

Events answer the when question in business documents and are easily spotted with the tell-
tale date and time details. As shown in Figure 14, preliminary thoughts are that there are two

primary types of Events, basic events and experiences.
Identity [which includes a Date/Time].

Basic events include the Event
Basic Event examples include Birth, Incorporation,

Shipment, events which are immutable — they happened. Experiences cover the type of
specialized Event that are mutable and tend to have durations (certificates, level of
attainment, status), and time periods such as in licensing. Further definition is still needed

for capturing histories, such as audit trails or shipping/receiving histories.

Basic event

Event

Identity
Date
Time

Experience

Figure 14

Identity
Date/time period
Characteristics
Attainment/

Certificates
Status

24

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS

SUBCOMMITTEE

XML DESIGN
REFERENCE MODEL

4.7 Location

Location represents the answer to the where question in a business process (Figure 15), and
are either physical or electronic, but each provides as part of its identity a precise and unique
address. Physical locations can be represented either in geography by latitude and longitude
readings, or by postal and delivery addresses. Electronic addresses in order to be unique
often need to follow standard schemes, such as Uniform Resource Indicators or ITU
international telephone number conventions.

Postal location

Identity:

Street address
Building name
Internal Routing
Suite

City
State/Region
Postal Code
Country

Delivery location

Geographic

Physical Location

Identity:

. Postal location
"

. Sub-location

Location

Identity

Location

. Latitude

. Longitude

. Location Name

. Property Location Tex

— Email Location

Identity:

. Address
Electronic
Location

Telecom Location

Identity:

Type
. Contact Number

Figure 15

OCTOBER 2002

25

XML DESIGN ASC X12C-COMMUNICATIONS AND CONTROLS
REFERENCE MODEL SUBCOMMITTEE

26 OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

5. OTHER DESIGN ISSUES

This section presents a number of other miscellaneous design issues that are not directly
addressed in the architecture. In some cases conclusions are presented. Where no clear
consensus was achieved, only discussion is presented.

5.1 What Constitutes a "Bullet" Document?
Concept Defined

A document sent from one person or organization to one or more persons or organizations
containing a single instance of a primary subject including supporting details or data.

Discussion

A "single primary subject" does not imply there can only be one line item in a single business
document.

The current X12 TS 837 for health care claims allows information for more than one patient
to be submitted in a single transmission or a single instance of a transaction set. Applying
our definition of a document would require six documents for six patients, a document for
each, that could contain multiple supporting details for that patient.

5.2 Default Override

Default and override are two related concepts, discussed here together because of their
dependencies. The foundation for the discussion are the concepts embodied in current X12
EDI semantics, and formally expressed in X12.59 "Semantics in EDI".

Concept Defined

In order to specify a delivery of a line item, you must say what it is and to where it will be
delivered. If XML maps those two things at each line item, it is simply syntax conversion.
Using "default” requires (1) sorting capability, and (2) knowledge of doing comparisons to
determine if the detail matches the default. If XML were to require that advanced processing
capability and knowledge, simple off-the-shelf tools will not handle it, resulting in a situation
that precludes bringing on board the SMEs.

Depending on your specific concerns this might be thought of as "duplication of data

problem”, "default and overriding data", or perhaps "table 1 & table 2 semantics".

Discussion
X12 Practice:

1) The X12 "Semantics in EDI" paper states the premise like this (paraphrasing here in a
semi-code-like fashion)

1-A) If some data XXX appears in both table-1 and table-2, The data XXX is considered
default values for all iterations table-2.

1-B) If the data YYY appears in an iteration of table-2, The data YYY overrides the earlier
data XXX.

OCTOBER 2002

27

XML DESIGN

ASC X12C-COMMUNICATIONS AND CONTROLS

REFERENCE MODEL SUBCOMMITTEE

2) Many X12 docs have multiple sections that carry "structurally-like" but "semantically-
different” data. What makes this worse is that in situations where the two "hunks" of
data might be the same, a need (perceived or otherwise) for data compression leads to
gyrations in either the message construction (read: weird loop or HL) or usage (read:
gotta explain it in the 1G). All so you don't have to send/specify the values twice.

Problems:

This is understood well by the X12 community, perhaps too well. This "fact" of the overriding
defaults is not consistently pointed out in our semantic notes for particular Transaction Sets,
and thus often must appear in implementation guides. And if the references to it are not
called out well, a recipient can misinterpret the intent of the sender.

A related issue revolves around duplication of structure (and data values) in messages (and
their instances). We have discussed this as a "multiple” roles issue. For instance, in a
health care claim there is always a subscriber and a patient. Groups of segments are
provided in the 837 for both, and the HIPAA guides (and other IGs) describe what values to
send when both are the same person.

Straw Man Proposal:

Introduce specific "semantic attributes"” to positively indicate in the instance data stream the
situations/conditions described above. These attributes might only appear on modules or
blocks. Caution is advised however, since using them in a finer-grain manner may introduce
as many problems they solve.

The example below uses arbitrary names so as not to influence the final name selection.

Examples:
1) A typical "tablel is default"-"table-2 overrides" example

1-A) To indicate that something is a "default” we have an attribute for modules as in:
<ShipTo gork="default"> --ship data-- </ShipTo>

1-B) Later in a "table 2 iteration" (not limited to this, but to keep discussion simple) we have
additional overriding shipping info:

<Lineltem>
<ShipTo gork="override"> --ship data-- </ShipTo>
--line item data--

</Lineltem>

2) A simple "Same As" or "Also Is" example,
2-A) A module of "subscriber" info stating it is also the "patient"
<Subscriber woof="Patient"> --party info-- </Subscriber>
-or-
2-B) A module of "subscriber" followed by a module of "patient”
<Subscriber> --party info-- </Subscriber>
<Patient woof="subscriber"> --info?-- </Patient>
3) Complex or "deep hierarchy" document. An attribute might be required to ensure

linking the right "pairs" default/override or same-as/also-is modules. This proposal is
for a "serialization" mechanism.

28

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

3-A) Variation of 1-A/1-B
<ShipTo gork="default" blat="001"> --ship data-- </ShipTo>

<Lineltem>
<ShipTo gork="override" blat="001"> --ship data-- </ShipTo>
--line item data--

</Lineltem>

3-B Variation of 2-B
<Subscriber blat="001"> --party info-- </Subscriber>
<Patient woof="subscriber" blat="001"> --info?-- </Patient>

Conclusions

By expressly stating the individual semantics being expressed in the instance document, we
are able to avoid "implicit" relationships that now appear irregularly in semantic notes and
IGs. The use of attributes here is appropriate, as they convey "semantic relationships” in a
way that is outside of the "data content". | am unsure at this point if the two concepts
(Default/Override in example 1 and SameAs/Alsols in example 2) should use the same
attribute ("gork" & "woof" in the examples) in practice.

However, some open issues remain:

« It has yet to be determined whether or not every piece of information that forms a
default has a default attribute designation.

» This may also have an affect on mandatory versus optional designations. For
example, say that the information required in a certain part of the message, say
the ship to in an order detail line, is mandatory in a semantic sense. But, if a
default block ship to block is used in the header, then the information in the detail
lines is optional. So, this makes the default ship to block in the header
mandatory. However, it is possible to construct messages where there is no
ship to in the header but each line item has a different ship to address.

* In cases like a health care claim where the Subscriber is the Patient, then you
shouldn't have to supply some patient details, but otherwise these are
mandatory. This could perhaps be supported with mutually exclusive sections,
one for when the subscriber is the patient, and one for when the subscriber is
not.

5.3 Two Roles for Same Instance Information: Explicit vs
Referential Content

Concept Defined

Many business documents have data structures that repeat. Sometimes the identical data
structures can contain identical content as well. Examples include ship to/bill to,
subscriber/patient, manufacturer/vendor, etc. For these cases it's quite reasonable to
consider whether specifying a way to eliminate repeating data (referential content, implied
content, or inferred content) is better than just repeating the data (explicit content) where
applicable. The following example illustrates an instance of this situation.

OCTOBER 2002

29

XML DESIGN

REFERENCE MODEL

ASC X12C-COMMUNICATIONS AND CONTROLS
SUBCOMMITTEE

Example

Explicit Content
<HealthCareClaim>

<Subscriber>
<ldentificationCode>1</IdentificationCode>
<Name>Santa Clause </Name>
<Address>North Pole </Address>
<WorkPhone>555-555-9627</WorkPhone>
</Subscriber>
<Patient>
<ldentificationCode>1</IdentificationCode>
<Name>Santa Clause </Name>
<Address>North Pole </Address>
<WorkPhone>555-555-9627</WorkPhone>
<EmergencyContact>Mrs. Clause </EmergencyContact>
<EmergencyPhone>555-555-9628</EmergencyPhone>
</Patient>
<ReasonForVisit>Chimney Smoke Inhalation </ReasonForVisit>
<Total>73.48</Total>

</HealthCareClaim>

Referenced Content
<HealthCareClaim>

<Subscriber>
<ldentificationCode>1</IdentificationCode>
<Name>Santa Clause </Name>
<Address>North Pole </Address>
<WorkPhone>555-555-9627</WorkPhone>
</Subscriber>
<Patient>
<PatientSameAsSubscriber>true </PatientSameAsSubscriber>
<EmergencyContact>Mrs. Clause </EmergencyContact>
<EmergencyPhone>555-555-9628</EmergencyPhone>
</Patient>
<ReasonForVisit>Chimney Smoke Inhalation </ReasonForVisit>
<Total>73.48</Total>

</HealthCareClaim>

Discussion

Arguments for the Referential Approach

1.

Smaller XML instance documents
a. Requires less bandwidth
a-b. Requires less storage space

Consistent with a referential approach to data structures that some developers are
comfortable with.

Arguments for the Explicit Approach

1.

Easier to express as an XML schema design rule.

1.2, Easier to apply as an XML schema design rule. Schema standard working groups will

set standards faster and be more confident in their decisions.

30

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN
SUBCOMMITTEE REFERENCE MODEL

3. The data structure requirements of a business document can be expressed exclusively
in the associated XML schema. Additional documentation is required for the referential
approach.

4. Instance documents are clearer (arguably).

4.5. Easier for companies to implement.
a. Slightly lower learning curve.
a:b. Lower development, integration, and testing costs.

6. Lower costs to bring new trading partners on-line.
Notes

1. Some have suggested that their on-line purchase experiences validate the referential
approach. Many B2C e-commerce sites (like Amazon.com) require bill-to and ship-to
information. These sites often require that the user enter bill-to information and allow the
user to simply click on a “Same as Bill-To” check box rather than enter duplicate
information in the Bill-To fields (if applicable). This case really doesn’t apply to the rule
under discussion since the driving factor for the user interface design (web page) is user
convenience that does not necessarily suggest a corresponding data structure on the
web server.

2. If one takes the referential approach, would the reference be required if the data
matches? In terms of our example, if the subscriber data and reference data match,
must the patient be referenced? Is it acceptable for the patient data to be explicitly
expressed (i.e., duplicated)?

2-3. Are there cases where one would need to know that the patient is the subscriber?

4. This rule is related to but independent of the use of identification codes. For example, the
XML schema may require subscriber and patient identification codes and not require any
of the demographic information. Considerations about this type of data structure are not
affected by the rule under discussion.

5. People’s time is money.

5.6. Delayed ROI is money.

OCTOBER 2002 31

XML DESIGN ASC X12C-COMMUNICATIONS AND CONTROLS
REFERENCE MODEL SUBCOMMITTEE

32 OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

6. METADATA AND DEFINITIONS

6.1 General

The metadata described here is the visible face of the DISA database for maintaining ASC
X12's XML standards. Other metadata required for the maintenance and integrity of the
database itself are not described. This section describes a general design for the database
required to maintain the X12 XML standards. Specific details and other design refinements
are anticipated as the work progresses.

The general view of the metadata is seven distinct dictionaries. One for each major
architectural construct: Document, Template, Module, Assembly, Block, Component, and
Primitive.

For all dictionaries, a primary key name will be maintained for each entry. This name will be
unique across all dictionaries.

Additional names will be maintained for each syntax expression supported, initially this
includes only the XML syntax. The uniqueness requirements for these additional name lists
are Open Issues.

Unless otherwise stated all MetaData items are mandatory, and must be included in the
MetaData descriptions. This does NOT imply that all items in a list are mandatory in usage.

Unless otherwise stated all metadata items are text-string, with the general exceptions noted
here
* RequirementsFlag values are one of the following:
e M Mandatory
* O Optional

 MinOccurs values are integer numerics equal or greater than zero.

* MaxOccurs values either an indication as unbounded, or an integer numeric
greater than zero.

It is the intent that the X12-XML MetaData itself will be made available in XML syntax, the
precise format of an XML syntax to carry the MetaData is an Open Issue.

The database will also make available information on relationships between items in different
dictionaries. This capability will allow for listing all references to individual items in one
dictionary by items in other dictionaries. (e.g. all Templates with a particular Module in any
TemplateSlot, or all Modules containing a particular Block)

6.2 Document

Definition: A distinct message description, reflecting a specific Business Process being used
in a particular context.

Use: Expresses a single message format, reflecting the needs of a specific set of business
contexts.

Properties:
* Represents an exchange of data that fulfills a single purpose in a business
process

e Completely specific semantics.

OCTOBER 2002

33

XML DESIGN

ASC X12C-COMMUNICATIONS AND CONTROLS

REFERENCE MODEL SUBCOMMITTEE

e Basis for production of an individual XML schema

Composed of:
» Areference to a specific Template

» A set of specific Module references, made from the choices available in the
Template

* A set of context references that drove the Module choices

Relates to/similar to (other specifications):
* Implementations of ASC-X12 Transaction Sets, or UN/EDIFACT Messages.
* Complete XML message specifications from other communities

Document

* DocumentName

A descriptive name for the Document, for consumption by humans, used as the
primary key for Documents in the DISA database. Maintained as unique by the
standards development process.

DocumentXmIName

A meaningful name for the Document , in upper camel case form, suitable for use as
the root XML element name in a message using a template. May be, but not
required to be, identical with the DocumentName.

* DocumentTemplate
A TemplateName, of the Template used for the Document.

» DocumentModuleList
e An ordered list of DocumentModuleListEntry
* This list is in the same order as, and has an entry for each entry in, the
TemplateSlotList of the Template specified by DocumentTemplate.

* DetailMaxOccurs
e The Maximum number of times the detail area can repeat.
e The value here must be equal to the corresponding value in the specified

Template , or a “hardening” of it (e.g. Un-Bounded in the Template , and 5
here).

* ResponsibleSubCommittee

Designator for the ASC-X12 Sub-Committee with primary responsibility for
maintenance.

DocumentModuleListEntry

* DocumentModuleXmIName
e A meaningful name for the Module (when used here), in upper camel case form,
suitable for use as a XML element name in a message.
» This is used to disambiguate the situation where a single defined Module is
used for two purposes in a single Document

« ContextCategoryValueList
* Un-Ordered List of ContextCategoryValuePair

* RequirementsFlag
e The value here must be equal to the corresponding value in the specified
Template , or a “hardening” of it (e.g. Optional in the Template, and Mandatory
here).

34

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

e The value must also be compatible with the MinOccurs and MaxOccurs values
in this DocumentModuleListEntry

* ModuleMinOccurs
e The value here must be equal to the corresponding value in the specified
Template , or a “hardening” of it (e.g. 1 in the Template , and 2 here).
» The value must also be compatible with the RequirementsFlag and
ModuleMaxOccurs values in this DocumentModuleListEntry
e ModuleMaxOccurs

» The value here must be equal to the corresponding value in the specified
Template, or a “hardening” of it (e.g. Un-Bounded in the Template, and 7 here).

e The value must also be compatible with the RequirementsFlag and
ModuleMinOccurs values in this DocumentModuleListEntry

ContextCategoryValuePair

* ContextCategory
* ContextCategoryValue

6.3 Template

Definition: A document "skeleton" fulfilling a single purpose in a particular business process
Use: Is the basis for defining document schemas for multiple business contexts.

Properties:
» Represents an exchange of data that fulfills a single purpose in a business
process

« Somewhat abstract semantics (not entirely neutral semantically, but not fully
specified by a specific context either)

Composed of:
« An ordered list of "slots" representing places in a completed schema that would
be filled by a module.
» Each slot fulfills a function in the Business Process being served.
* Asingle set of adjacent slots can be designated as a “Detail”, to be repeated as
a unit in a Document constructed from a Template.
Relates to/similar to (other specifications):

e Can be identified with ebXML/UN/CEFACT business process modeling.

Template

e TemplateName

A descriptive name for the Template, for consumption by humans, used as the
primary key for Templates in the DISA database. Maintained as unique by the
standards development process.

e TemplateXmIName

A meaningful name for the Template , in upper camel case form, suitable for use as
the root XML element name in a message using a Template. May be, but not
required to be, identical with the TemplateName.

e TemplateFamily
Identification of the Business Process to which this Template applies.

OCTOBER 2002

35

XML DESIGN

REFERENCE MODEL

ASC X12C-COMMUNICATIONS AND CONTROLS
SUBCOMMITTEE

BusinessProcess
Identification of the Business Process to which this Template applies.

BusinessProcessFamily
Identification of the family of Business Processes to which this Template applies.

BusinessProcessSubFamily

Further identification within the specific BusinessProcessFamily to which this
Template applies.

TemplateDescription

» text-paragraph

Describes general business purpose filled by a message using a Template. May
also describe the business purpose fulfilled by sending/receiving the message, or the
circumstances surrounding the generation of the message.

TriggeringEventDescription

e Text-paragraph

This describes the event in the business process being served that triggers the need
to generate a message using the Template. This description may also include the
range of expected responses to receipt of the generated message.

DetailMaxOccurs

The Maximum number of times the TemplateSlots designated as detail can repeat
as a group.

TemplateSlotList

e Ordered list of TemplateSlotListEntry

e Matched usage/requirement list

* This list must contain at least one entry, in almost all cases will contain several
entries

* This list is the main purpose of the Template.

e Each entry in the list must serve a different and distinct functional purpose in the
template.

ResponsibleSubCommittee

Designator for the ASC-X12 Subcommittee with primary responsibility for
maintenance.

TriggeringEventDescription

Text-paragraph

Describes the event in the business process being served that triggers the need
to generate a message using the template. This description may also include
the range of expected responses to receipt of the generated message.

TemplateSlotListEntry

TemplateSlotName
* Unique in parent TemplateSlotList

TemplateSlotPurpose
e Text-paragraph
» Description of purpose served by Modules filling slot

TemplateSlotDetailFlag
TemplateSlotModuleList

36

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

e Un-Ordered list of TemplateSlotModuleListEntry

TemplateSlotModuleListEntry
* ModuleName

* ModuleSlotXmINname
* A meaningful name for the Module (when used here), in upper camel case form,
suitable for use as a XML element name in a message.
e This is used to disambiguate the situation where a single defined Module is
used for two purposes in a single Template

» ContextCategoryValueList
* DetailFlag

* RequirementsFlag

The value must be compatible with the MinOccurs and MaxOccurs values in this
TemplateSlotModuleListEntry

* ModuleMinOccurs

The value must be compatible with the RequirementsFlag and ModuleMaxOccurs
values in this TemplateSlotModuleListEntry

* ModuleMaxOccurs

The value must be compatiable with the RequirementsFlag and ModuleNinOccurs
values in this TemplateSlotModuleListEntry

ContextCategoryValueList
* Un-Ordered List of ContextCategoryValuePair

ConextCategoryValuePair
¢ ContextCategory

« ContextCategoryValue

6.4 Module

Definition: A set of related data that serves a specific purpose in a business document
(Template).

Use: Fills a slot in a Template.

Properties:

* Answers a particular Semantic Question within the Business Process (e.g.
Who/What/When/Where/Why)

* Re-usable within Templates

* May have the same contents as other modules.

* Unigue Semantic Identity

e Semantic uniqueness

» Context specific semantics (concrete as opposed to abstract).

OCTOBER 2002

37

XML DESIGN
REFERENCE MODEL

ASC X12C-COMMUNICATIONS AND CONTROLS
SUBCOMMITTEE

Composed of either:
» One-or-more Blocks and/or Assemblies arranged as a list
» Two-or-more Blocks and/or Assemblies arranged as a hierarchy
Relates to/similar to (other specifications):
* ebXML UN/CEFACT Aggregate Business Information Entity
* Loops in ASC-X12 Documents, identified by code list values in the first segment
of the loop
Module
* ModuleName
A descriptive name for the Module, for consumption by humans, used as the
primary key for Modules in the DISA database. Maintained as unique by the
standards development process.
* ModuleXmIName
A meaningful name for the Module , in upper camel case form, suitable for use as a
XML element name in a message. May be, but not required to be, identical with the
ModuleName .
e ModuleDescription
e Text-paragraph
* ModuleNode
* ResponsibleSubCommittee
Designator for the ASC-X12 Subcommittee with primary responsibility for
maintenance.
ModuleNode
* ModuleNodeName
A descriptive name for the ModuleNode , for consumption by humans. Maintained
as unique, within this Module and its contents, by the standards development
process.
e ModuleNodeXmIName
A meaningful name for the ModuleNode , in upper camel case form, suitable for use
as a XML element name in a message. May be, but not required to be, identical with
the ModuleNodeName .
e AssemblyName-or-BlockName-or-ModuleNodeL.ist
e RequirementsFlag
The value must be compatible with the MinOccurs and MaxOccurs values in this
ModuleNode
* MinOccurs
* MaxOccurs
ModuleNodeList
* ModuleNodeListName
* ModuleNodeListXmIName

Ordered list of ModuleNode

38

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

6.5 Assembly

Definition: A group of related nouns (person/place/thing/event/purpose).
Use: For conveniently re-using related groups of blocks.

Properties:

¢ Re-usable within Modules

« Has a unique set of Blocks/Assemblies, though it may share Blocks with other
similar Assemblies.

* May consist of a set of Blocks that is a subset of the Blocks of contained in
another Assembly

e Unigue Semantic Identity

e Semantic uniqueness

e Abstract semantics (context independent)
e May be similar to other Assemblies

Composed of either:

* Two-or-more Blocks
e One-or-more Blocks and one-or-more other Assemblies

Relates to/similar to (other specifications):
* ASC X12 segment groups (though segment groups are not named or stored as
such in the X12 dictionary)
* EbXML/UN/CEFACT Aggregate Core Components

Assembly

e AssemblyName

A descriptive name for the Assembly , for consumption by humans, used as the
primary key for Assemblies in the DISA database. Maintained as unique by the
standards development process.

* AssemblyXmIName
A meaningful name for the Assembly , in upper camel case form, suitable for use as
a XML element name in a message. May be, but not required to be, identical with
the AssemblyName .

e AssemblyList

e Ordered list of AssemblyListEntry
AssemblyListEntry

« BlockName-or-AssemblyName

* RequirementsFlag

The value must be compatible with the MinOccurs and MaxOccurs values in this
AssemblyListEntry

* MinOccurs

The value must also be compatiable with the RequirementsFlag and MaxOccurs
values in this AssemblyListEntry

OCTOBER 2002

39

XML DESIGN

REFERENCE MODEL

ASC X12C-COMMUNICATIONS AND CONTROLS
SUBCOMMITTEE

6.6

MaxOccurs

The value must also be compatible with the RequirementsFlag and MinOccurs
values in this AssemblyListEntry

Block

Definition: Completely (for intended business use) describes a single noun - person, place,
thing, event, or purpose.

Use: Used for describing a single person, place, thing, event, or purpose

Properties:

Describes something that can be named by a single noun

Concise

Must have identity information

May have characteristics information

Unique Semantic Identity

Semantic uniqueness

Abstract semantics (context independent)

Re-usable within assemblies or modules

May be similar to other blocks, as nouns are similar to other nouns.
A block has a unique set of components, though it may share components with
other similar blocks.

A block may consist of a set of components that is a subset of the components
of contained in another block.

Composed of:

Two-or-more Components

Relates to/similar to (other specifications):

Block

X12 segments, partial or complete
EbXML/UN/CEFACT Aggregate Core Components

BlockName

A descriptive name for the Block , for consumption by humans, used as the primary
key for Blocks in the DISA database. Maintained as unique by the standards
development process.

BlockXMLname
A meaningful name for the Block , in upper camel case form, suitable for use as a

XML element name in a message. May be, but not required to be, identical with the
BlockName .

BlockType

One of Person/Place/Thing/Event

ComponentList

Ordered list of ComponentListEntry

40

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

ComponentListEntry

¢ ComponentName
« ldentificationCharectaristicFlag

e RequirementsFlag

6.7 Component

Definition: A single semantic unit of information.
Use: Identification or a characterization within block

Properties:
* Unigue Semantic Identity
e Semantic uniqueness
* Abstract semantics (context independent)
* Re-usable within blocks
* Has a unique set of primitives
Composed of either
« One value with a specified datatype representation

e Two values, each with a datatype representation. The first value is qualified by
the second (e.g. a currency amount and a currency type, or a weight and a unit
of measure).

Relates to/similar to (other specifications):
» EbXML UN/CEFACT basic core component
* ASC X12 Data Element

Component

 ComponentName

A descriptive name for the Component, for consumption by humans, used as the
primary key for Components in the DISA database. Maintained as unique by the
standards development process.

* ComponentXMLname

A meaningful name for the Component, in upper camel case form, suitable for use
as a XML element name in a message. May be, but not required to be, identical with
the ComponentName .

* ComponentContent

ComponentContent

e SingleComponentContent-or-PairedComponentContent

SingleComponentContent
» ComponentRepresentationType
» ComponentMinLength

» ComponentMaxLength

OCTOBER 2002

41

XML DESIGN

ASC X12C-COMMUNICATIONS AND CONTROLS

REFERENCE MODEL SUBCOMMITTEE

PairedComponentContent
» First SingleComponentContent
* Second SingleComponentContent

» Second Component RequirementsFlag

ComponentRepresentationType

6.8 Primitive

Definition: A Primitive is a unique semantic entity, having a uniqgue semantic identifier.
Use: Identify like entities.

Properties:

» Unlike a Component, a Primitive may be identified indirectly through a code list
value of a Component.

e Each such Component may identify the Primitive using a different code list value.
* While both Components and Primitives represent unique semantic entities, a

Primitive conveys only its identity, whereas a Component conveys both an
identity and a value.”

For example, "Federal Tax Identification Number" is a unique semantic identity. It might be
used as a Component, whose value represents an individual social security number (E.g.,
X12 DE 325 Tax ldentification Number {NOTE: DE 325 is not an exact equivalent of Federal
Tax ldentification Number. The example is intended to show the possible use of FTIN as a
Component).

Or it may be used as a Primitive associated with a Component such as 'Reference Identifier’,
and represented by an associated code list value of 'TJ' (E.g., see X12 DE 128, 'Reference
Identifier Qualifier). And the primitive might also occur in another Component, such as 'Tax
Identifier' with an associated code list value of '01".

Primitive
¢ PrimitiveName

A descriptive name for the Primitive , for consumption by humans, used as the
primary key for Primitives in the DISA database. Maintained as unique by the
standards development process.

* PrimitiveDescription
e text-paragraph

This is further descriptive information about the Primitive . This may include, its
purpose, typical uses, and common synonyms.

6.9 User View of the Secretariat Database

This section describes a user-view of the “Database” maintained by DISA for ASC-X12's
XML activities. No inference on actual structure of data or the tools used to provide the
“Database”

42

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

The notion of user-view describes both the data that must be supported, but also capabilities
needed to make best use of the information. In particular, two fundamental needs must be

met:

1) Providing open-access to Standards in XML produced by ASC-X12

2) Facilitating the standards development and maintenance activities.

At the highest level the database has Dictionaries and Lists. Dictionaries hold the
descriptions of the X12-XML standards. Lists aid users in locating particular standards, for
example by similarity in form or purpose.

There are 7 dictionaries, each matching a distinct semantic granularity:

DocumentDictionary
TemplateDictionary
ModuleDictionary
AssemblyDictionary
BlockDictionary
ComponentDictionary
PrimitiveDictionary

SimilarTemplateList

A list maintained of Templates that fulfill similar business purposes. This list is
maintained for comparison during maintenance of existing Templates or
development of new Templates. This list is also useful for discovering appropriate
Templates to serve a particular business purpose.

OCTOBER 2002

43

XML DESIGN ASC X12C-COMMUNICATIONS AND CONTROLS
REFERENCE MODEL SUBCOMMITTEE

44 OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

/. XML SYNTAX DESIGN

7.1 General
7.1.1 Scope and Purpose

This section addresses XML syntax design issues that are common to both the design of
XML messages (instance documents) and schemas describing those messages.

7.1.2 Versioning

This report anticipates that ANSI ASC X12 will continue with its current policy of one major
and two minor releases each year, and that the whole of the XML syntax standard would be
reissued at each release.

The preliminary recommendation for a mechanism to handle versioning is:

* A unique root namespace for each version. An example for version 5010 might
be urn:schemas.x12.org/005010/

* Schemas for each release would be accessible on the World Wide Web via
URLSs that correspond to the namespace of the release.

7.1.3 Internationalization Features

Since the scope of X12's XML standards is primarily the United States, this report does
not recommend extensive features to support internationalization. XML 1.0, in Unicode,
supports all major national character sets that are likely to be needed. This report
recommends using "Oxford English" spellings for names.

7.1.4 Software Processing Considerations

This report proposes taking a fairly neutral position on software processing considerations
due to the rapidly evolving nature of XML software. However, there are a few considerations
to be noted in this area:

* Related to the discussion of "what constitutes a document”, this report
recommends that instance documents (supported by the schemas that define
them) be kept to a "reasonable” size since many XML parsing APIs load the
entire document into memory.

» For ease in processing, this report recommends a maximum level of nesting of
elements. We anticipate that this level will be in the neighborhood of ten levels
of nesting below the root element of a document.

7.1.5 General Naming Conventions

This report recommends the use of so-called "Oxford English" in the spelling of names. It
also recommends, per the ebXML specifications, upper camel case for elements and lower
camel case for attributes. Other aspects of haming conventions as specified in the ebXML
Technical Architecture V1.0.4, Section 4.3, are also recommended.

OCTOBER 2002

45

XML DESIGN ASC X12C-COMMUNICATIONS AND CONTROLS
REFERENCE MODEL SUBCOMMITTEE

7.2 Messages
7.2.1 Scope and Purpose

This section addresses XML syntax design issues relevant to the design of XML messages
(instance documents).

7.2.2 Naming Conventions

Naming conventions are not addressed in this version of the report.

7.2.3 Absence of Data and Related Considerations

Absence of data - If an element or attribute does not occur in an instance document, no
semantics shall be interpreted from it, i.e. no default values shall be assumed. Nothing can
be inferred other than that the creator of the document did not include the element or
attribute in the document.

Spaces - Spaces sent as values for string type elements or attributes shall be interpreted as
spaces. Leading and trailing spaces should be removed, but are assumed to be significant if
they appear. The default whiteSpace facet of XML Schemas, that of preserving white space,
is to be used.

Zeroes - A zero appearing in a numeric type element or attribute shall be interpreted as a
zero value.

Nullability - In certain cases, it may be desirable to convey that an element has no value (a
null value) rather than indicating that it has a value of spaces or that it is not present in a
document. In these cases, the originator of the instance document should convey explicitly
that an element is null using the null type (e.g. xsi:null="true"), rather than using zero, spaces,
or an empty element.

7.2.4 Comments

This report recommends against inserting comments in instance documents on the grounds
that the X12 standards are designed for computer-to-computer processing without human
intervention.

7.2.5 Elements vs. Attributes

Description: Often it is possible to model a data item as a child element or an attribute.

Benefits of Using Elements

* They are more extensible because attributes can later be added to them without
affecting a processing application.

e They can contain other elements. For example, if you want to express a textual
description using XHTML tags, this is not possible if description is an attribute.

» They can be repeated. An element may only appear once now, but later you
may wish to extend it to appear multiple times. (NOTE: an element can be
“bounded” for finite instances of the element or can be “unbounded”)

* You have more control over the rules of their appearance. For example, you can
say that a product can either have a number or a productCode child. This is not
possible for attributes.

* Their order is significant if specified as part of a sequence, while the order of
attributes is not. Obviously, this is only an advantage if you care about the order.
(NOTE: cardinality can be captured through the “sequence” grouping of
elements)

46 OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

* When the values are lengthy, elements tend to be more readable than attributes.
Disadvantages of Using Elements

« Elements require start and end tags, so are therefore more verbose. (NOTE: not
all elements require a start and end tag — elements can be declared in a single-
line i.e.

e <xs:element name="x12document” type="x12documenttype”/>
Benefits of Using Attributes

e They are less verbose (NOTE: depending on naming convention attributes
should not be verbose in schemas, “attribute” names following a naming
convention that removes any reference to the localized element it described as
this is unnecessary and repetitive. If applying the attribute from within an
AttributeGroup then the contextual value of the attribute name should be
contained within the attributename.

» Attributes can be added to the instance by specifying default values. Elements
cannot (they must appear to receive a default value)

« Attributes are atomic and cannot be extended and its existence should serve to
remove any and all possible ambiguity of the element it describes. They are
“adjectives” to the element “noun”.

Disadvantages of Using Attributes
« Attributes may not be extended by adding children, whereas a complex element
may be extended by adding additional child elements or attributes.

» If attributes are to be used in addition to elements for conveying business data,
rules are required for specifying when a specific data item shall be an element or
an attribute.

Recommendation: Use elements for data that will be produced or consumed by a business
application, and attributes for metadata.

7.2.6 Namespaces

Namespaces are more of a concern in desighing schemas and are discussed in greater
length in that section. In regard to instance documents, this report recommends:

« Minimal namespace prefixes be required in instance documents. Ideally, only
the root element, if even that, would require a namespace prefix.

» Explicit namespace references shall not be used at the element or attribute level
below the root document element.
7.2.7 Communication Integrity - Envelope, Security, and Related Information

These issues are beyond the scope of this report since it deals primarily with representing
business semantics in XML syntax and not with broader implementation issues. This report
supports the direction of X12 in recommending use of ebXML specifications wherever
appropriate.

7.2.8 Processing Instructions

Description: Processing instructions can be used to pass information to the processing
application.

OCTOBER 2002

47

XML DESIGN

ASC X12C-COMMUNICATIONS AND CONTROLS

REFERENCE MODEL SUBCOMMITTEE

Benefits:

Risks: Processing instructions usually contain information that should normally be included
in the document as XML.

Recommendation: Do not use processing instructions in either the schema document or
the instance.

7.3 Schema
7.3.1 Scope and Purpose

This section addresses XML syntax design issues that are relevant to the design of schemas
describing XML messages

7.3.2 Schema Considerations for Namespaces, Nullability and Related
Issues

String type - An empty string type element or attribute satisfies mandatory constraints in XML
schema (elements with minOccurs of 1 or mandatory attributes). Therefore, elements or
attributes with a type of string that is defined as mandatory shall be defined with a minimum
length requirement of 1. An open issue in this report is whether or not to require a pattern of
at least one non-space character for such required elements or attributes. To satisfy the
requirement for a string element or attribute, XML schema considers any Unicode character
to be valid. One space in a string element or attribute is considered valid.

Nullability - An element shall not be marked as nullable if it is mandatory, i.e., minOccurs is
one. Conversely any element defined with minOccurs of zero shall be nullable.

7.3.3 Content Models

* Use of Mixed Content
Description: Elements with mixed content are allowed to have both child elements
and textual content.

Benefits: Mixed content is useful for textual descriptions, which may or may not
contain markup to indicate emphasis, formatting, etc.

Risks: The textual content of mixed elements cannot be validated or constrained to
any particular data type.

Recommendation: Do not allow mixed types since they are inappropriate for usage
in documents designed solely for data exchange.

* Wildcards
Description: XML Schema allows wildcards to be specified in content models
(using <any>) and attribute declarations (using <anyAttribute>).

Benefits: Wildcards allow a content model (or attribute list) to be highly flexible,
making them more extensible.

Risks: Wildcards can sometimes allow invalid data (e.g., a product with two sizes
when only one is allowed), so they should generally be used only for elements in
other namespaces.

Recommendation: Disallow use of wildcards.

48

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

Abstract Types

Description: Abstract types allow use of complex types in such a way that a single
element name can be used to represent various types in an XML document instance.
Abstract types are complex types that act as “templates” that cannot be directly used
in an XML document instance. In order to use an abstract type, a derived type must
be used to represent the abstract type in an XML document instance.

Benefits:

» Extensibility - other schemas can use the abstract type as the basis for
derived types.

« Abstract types provide a mechanism for enforcing "at least one of" business
constraints as a requirement for a person to have at least one identifier
present, but either name or an ID number might be acceptable. By requiring
an abstract element in the schema and having two concrete elements that
could satisfy it, this functionality is supported.

Risks: It is possible that a processing application (such as a data translation
product) may not be able to easily handle this technique. That is, a processing
application may be need to be configured to recognize an element named
EmployeeAddress as always having a single, static type (such as
UnitedStatesAddressType) rather than a type that can vary depending on the XML
document instance.

Recommendation: Abstract types should generally not be used because they
contribute to a degree of uncertainty about what an XML document instance will look
like, i.e., they contribute to randomness. They may be used in specific
circumstances where an "at least one of" constraint is required.

Use of Groups

Description: XML Schema allows fragments of content models to be named and
referenced from multiple complex types. It is also possible to create attribute groups
that can be reused in multiple complex types.

Benefits: Use of groups promotes reuse.

Risks: Occasionally, too much reuse can complicate maintenance. In addition, the
functionality offered by groups is very similar to that offered by types. The
unnecessary use of too many schema features when only a few features would be
sufficient can hinder understandability.

Recommendation: This report makes a preliminary recommendation to avoid use
of groups and instead try to use types as much as possible.

(NOTE: In an effort to achieve both reusability and interoperability, the declaration of
groups should serve this purpose. Through Schema design it is possible to combine
both the localized features and global constructs using “complexType” and
“simpleType” components.

Substitution Groups

Description: XML Schema allows for elements to substitute for other elements by
defining substitution groups. An element can be declared to be a substitute for
another element, the "head" element, allowing the new element to appear anywhere
the head element may appear.

Benefits: Substitution groups result in flexible, extensible types.

They can simplify content models, by specifying only the "head" element in the
content model and using substitution to allow all the possibilities.

OCTOBER 2002

49

XML DESIGN

REFERENCE MODEL

ASC X12C-COMMUNICATIONS AND CONTROLS
SUBCOMMITTEE

7.3.4

Risks: Excessive flexibility. Another schema author can significantly alter a type by
declaring substitution elements.

Recommendation: Prohibit substitution groups.

Group Redefinition

Description: XML Schema allows a schema author to redefine the types or groups
of another schema document.

Benefits: Redefinition is useful for making small changes to an existing schema
document.

Risks: Because the redefined components replace the original components, they
can have adverse effects on other components defined in the original schema
document.

Redefinition is under specified in the XML Schema recommendation, and it is likely
that different processors treat redefinitions slightly differently.

Recommendation: Do not use redefinition.

Types

Anonymous vs. Named Types

Description: XML Schema allows for types (simple and complex) to be named (and
defined globally) or anonymous (and defined locally).

Benefits of Named Types

* Named types may be defined once and used many times. This encourages
reuse and consistency, simplifies maintenance, and reduces the size of
schemas.

« Named types can also make the schema document more readable, when the
type definitions are complex.

« Named types can be redefined and have other types derived from them. This
increases their flexibility and extensibility.

Benefits of Anonymous Types

* They are slightly less verbose.

» They can be more readable when they are relatively simple. Itis sometimes
desirable to have the definition of the type right there with the element or
attribute declaration.

Recommendation: Always use named types.

Built-In Simple Types

Description: XML Schema has 44 built-in data types, covering numbers, strings,
dates and times, XML 1.0 types such as NMTOKENS and ID, boolean, anyURI, and
other common types. These types have specific lexical formats, e.g., a date must be
CCYY-MM-DD.

Benefits

» Using the built-in types increases interoperability with other XML
applications.

« Values of built-in types are automatically validated by the processor, e.g., a
date cannot be April 31.

Risks: The built-in types may not have the lexical formats that you have traditionally
used.

50

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

Recommendation: Use only XML Schema built-in data types. Further, we shall
use a subset of the full types, with that subset to be defined in development of X12's
XML equivalent of X12.6.

Type Redefinition

Description: XML Schema allows a schema author to redefine the types or groups
of another schema document.

Benefits: Redefinition is useful for making small changes to an existing schema
document.

Risks: Because the redefined components replace the original components, they
can have adverse effects on other components defined in the original schema
document.

Redefinition is under specified in the XML Schema recommendation, and it is likely
that different processors treat redefinitions slightly differently.

Recommendation: Do not use redefinition.

Type Derivation

Description: XML Schema allows a type to be derived from another type (its base
type), either by extension or restriction. Extension adds attributes, and adds
elements to the end of the content model of the base type. Restriction limits a base
type to a more restrictive set of valid values.

Benefits: Restriction allows more refined data types to be created which allows
stricter validation in specific cases.

Extension allows the base type to be used with additional extensions, which
encourages reuse.

Risks: Derived types can be used for type substitution (see "Type Substitution™). If
type substitution is not to be allowed, the base complex type should have the block
attribute specified.

Recommendation: Allow type derivation.

Type Substitution

Description: Type substitution allows for the use of derived types in an instance
document. If an element is declared to be of a base type, the element may appear in
the instance having any type that is derived from the base type. To do this, it must
use the xsi:type attribute to identify the derived type to which it conforms.

Benefits: Type substitution allows an element to have one of several types in an
instance document. For example, a generic address type can be created, with
extensions for specific countries, e.g. UKAddressType, USAddressType, etc. The
address element can then appear in the instance using whichever of these types is
appropriate.

Risks:

« Can lead to problems in processing by applications when a type specified in
an instance document overrides the type specified in a schema.

» If you do not intend to allow flexibility of the type of an element, you should
not allow type substitution.

Recommendation: Disallow type substitution.

OCTOBER 2002

51

XML DESIGN

ASC X12C-COMMUNICATIONS AND CONTROLS

REFERENCE MODEL SUBCOMMITTEE

7.3.5 Local vs. Global Declarations

Description: Elements and attributes can be either declared globally or locally. Globally
declared elements and attributes appear at the top level of the schema (with xsd:schema as
their parent). Locally declared elements and attributes are declared entirely within a complex

type.
Benefits of Global Declarations

* They can be reused in many complex types.

* A globally declared element can be the root element of the instance document
for validation purposes (a locally declared element cannot.)

* Global element declarations can participate in substitution groups; local element
declarations cannot.

Benefits of Local Declarations

There can be many locally declared elements with the same name but different types and/or
different default or fixed values. For example, it is possible to have a "title" element that is a
child of "person”, which has the valid values "Mr.", "Mrs." and "Ms.". Another element named
"title" that is a child of "book" can have free-form text. Because global element declarations
are unique by name, there can only be one globally declared element named "title".

Recommendation: Declare elements and attributes locally, except for the root element.

7.3.6 Use of Default/Fixed Values

Description: XML Schema allows fixed or default values to be specified for elements and
attributes.

Benefits: Additional information can be added to the instance without requiring the instance
author to specify it.

Risks: When a schema is not present, the default or fixed value cannot be filled in.
Recommendation: Disallow use of default and fixed values.

NOTE: There are cases where the use of default values has "value”. In the event X12 wants
to reconsider this recommendation, this section from the primer provides a good explanation.

Default values of both attributes and elements are declared using the default attribute,
although this attribute has a slightly different consequence in each case. When an attribute is
declared with a default value, the value of the attribute is whatever value appears as the
attribute's value in an instance document; if the attribute does not appear in the instance
document, the schema processor provides the attribute with a value equal to that of the
default attribute. Note that default values for attributes only make sense if the attributes
themselves are optional, and so it is an error to specify both a default value and anything
other than a value of optional for use.

The schema processor treats defaulted elements slightly differently. When an element is
declared with a default value, the value of the element is whatever value appears as the
element's content in the instance document; if the element appears without any content, the
schema processor provides the element with a value equal to that of the default attribute.
However, if the element does not appear in the instance document, the schema processor
does not provide the element at all. In summary, the differences between element and
attribute defaults can be stated as: Default attribute values apply when attributes are missing,
and default element values apply when elements are empty.

52

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

7.3.7 Keys and Uniqueness

Description: Sometimes it is desirable to associate information within an XML document
with other information in the document when those items of information may or may not
already be implicitly related by being siblings under the same parent element. This can be
done strictly at the level of business semantics by defining elements or attributes to link the
information items through a common reference. Schema provides several mechanisms to
do this and enforce the validity of such links at the XML parser level.

ID/IDREF

This concept originated with DTDs, and is also used in XML Schema. In this technique, an
ID value is used by an XML processor to associate information within an XML document.
This allows information to be separated within an XML document, yet still be associated
during processing. A parser can verify that there is a corresponding ID value in an XML
document instance for a given IDREF value

Benefits of ID/IDREF Technique:

» It allows information in an XML document instance to be linked during
processing by a processing application

e It ensures validation of the associations by an XML processor — i.e. that there is
a corresponding ID value for an IDREF value — without defining extra
processing (i.e., it is “built in” to an XML processor).

Risks :

* It does not allow links between entities in an XML document instance to be
recognized by an XML processor

* An ID value must be unigue within an XML document. This means that in the
above example, there could never be the same ID value for a customer and an
invoice. This requirement is not realistic, as the ID values for two different
entities may not only be of the same structure but may also have the same
values in certain cases.

* An ID value must begin with a letter and cannot contain whitespace or non-
alphanumeric characters (except for underscore).

KEY/KEYREF

This concept originated with XML Schema. Unlike the ID/IDREF technique, this technique
allows links between entities in an XML document instance to be recognized by an XML
processor. It also allows ID values to be repeated within XML documents without yielding an
error from an XML processor (as with the uniqueness technique, discussed below).
Additionally, it adds the requirement that the element or attribute specified in the field
element of a constraint declaration must always appear in an XML document instance.

Benefits of KEY/KEYREF Technique:
« It allows links between entities in an XML document instance to be recognized by
a schema processor

» It allows ID values to be repeated within XML documents without yielding an
error from a schema processor

« ID values do not have the format constraints that were imposed in the ID/IDREF
technique; that is, an ID value may be of any datatype

OCTOBER 2002

53

XML DESIGN

ASC X12C-COMMUNICATIONS AND CONTROLS

REFERENCE MODEL SUBCOMMITTEE

Risks of KEY/KEYREF Technique:

» Constraint declaration names must be unique within an XML document instance,
regardless of namespace - this applies for externally referenced schemas as
well.

» A schema processor may not detect an incorrect XPath expression in either the
selector or field element of the constraint declaration. This can cause the
constraint to not be enforced, resulting in potential violations of the key
constraint.

XLink/XPointer

This technique utilizes two relatively new XML concepts to link entities within XML document
instances. It allows links to be specified either within an XML the same document instance
as the entities being linked (through use of a “simple” link or “extended” link), or outside of it
in a different XML document instance (through use of an “extended” link). Extended links
can be very useful in cases where an XML document instance cannot be updated; they also
allow linking information to be centralized in one place if required.

Benefits of XLink/XPointer Technique:

« It allows links between entities in an XML document instance to be recognized by
a schema processor (although the schema processor must be XLink- and
XPointer-aware)

« The use of XLink constructs allow the links to be given special handling in an
XLink-aware processor. For instance, additional XLink constructs may be used
to allow links to be highlighted for selection

« Extended links can be specified either in the same XML document instance as
the entities that they link or outside of it in a different XML document instance

Risks of XLink/XPointer Technique:
This technique has several disadvantages:

« An ID value must be unique within an XML document. For more information,
see ID/IDREF section above.

* An ID value must begin with a letter and cannot contain whitespace or non-
alphanumeric characters (except for underscore). For more information, see
ID/IDREF section above.

» Since the XLink and XPointer standards are both very new (XLink became a
W3C Recommendation in June 2001 and XPointer is currently a Candidate
Recommendation), there is currently very little XML processor support for them

» Use of extended links requires a fair amount of additional information to be
specified for each entity that is being linked; e.g., xlink:locator elements, role
attributes, xlink:arc elements, etc.

Recommendation

The recommendation for the appropriate syntax technique must be consistent with the
functionality defined by the architecture, and this aspect of the architecture is not as yet fully
defined. It is discussed somewhat in Section 6.3, but not sufficiently for purposes of
specifying a final syntax recommendation. However, the preliminary recommendations are:

« The KEY/KEYREF technique should be used to enforce links between entities in
an XML document instance.

* The uniqueness technique should be used to enforce uniqueness when the
element or attribute specified in the field element is not mandatory. The KEY

54

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

7.3.8

technique (without KEYREF) should be used to enforce uniqueness when the
element or attribute specified in the field element is mandatory.

Extreme caution should be applied in each of the above techniques to ensure that
the XPath expression that is specified is correct, so that the uniqueness constraint
can be properly enforced.

It is also recommended that the following situation never be allowed:

e Uniqueness must be enforced AND
* Links are required AND
« The element or attribute specified in the field element is not mandatory

There is no technique that is available to handle the above situation, because in the
KEY/KEYREF technique the element or attribute specified in the field element must
appear in the XML instance document. For this reason, it is recommended that in all
cases where links are required, the element or attribute specified in the field element
be declared as mandatory.

Special attention should also be given to the fact that constraint declaration names
must be unigue within an XML document instance.

This report recommends against use of XPointer and XLink since they are still
relatively immature.

Annotations and Notations

Annotations

Description: XML Schema allows schema components to be annotated using the
<annotation> element. The annotation element can contain one or more
<documentation> or <appinfo> elements that can themselves have any attributes
and contain any text or child elements.

Benefits:

« An annotation adds descriptive information that makes a schema component
easier to understand.

e Structured annotations are machine- as well as human-readable, allowing them
to be used by applications or to generate specification guides.

Risks: Excessively large or repetitive annotations actually decrease the readability
of the schema document, and slow down validation.

Recommendation: Use annotations for all type definitions, and define a standard
format and structure for those annotations that is consistent with the metadata
defined in section 7. Do not use XML comments in schemas.

Notations

Description: Notations can be used to specify the type of a file (for example, a
graphics image) that is related to an XML document via an external entity.

Benefits: Notations can be useful for identifying the type of a file.

Risks:

» There is no standardized way to process notations.

* Generally, notations are unnecessary because the processing application
already understands the type of a related file.

Recommendation: Do not use notations.

OCTOBER 2002

55

XML DESIGN

ASC X12C-COMMUNICATIONS AND CONTROLS

REFERENCE MODEL SUBCOMMITTEE

+ Documentation

Description: W3C Schema introduces a standard <documentation> element that
can be used to enclose comments. The DTD-style comment technique is also
supported in W3C Schema. The <documentation> element can have two attributes:

« A “source” attribute that contains a URL to a file containing supplemental

information
« An xmllang attribute that specifies the language in which the documentation is
written.
Benefits of Using <documentation> Element: Use of the <documentation> element to

add comments to a schema rather than the DTD-based approach is advantageous because
it allows the comments to be processed by a processing application or program such as a
stylesheet. Once this is done, there is no limit to what can be done with the extracted
comments.

Risks of Using <documentation> Element:
There are no risks to using this technique.

Recommendation: The <documentation> element SHOULD be used for comments. The
DTD-based comment techniqgue SHOULD NOT be used.

7.3.9 Processing Instructions from Schema Level <APPINFO>

Description : The <appinfo> element is the XML Schema equivalent of the processing
instruction. Like processing instructions, the <appinfo> element offers a place in which to
provide additional information that can be passed to a processing application by an XML
parser.

Benefits of <appinfo> Element

The <appinfo> element can be very useful for passing processing commands or other types
of supplemental information to a processing application.

Risks of Using <appinfo> Element

The use of the <appinfo> element is considered highly risky at this time, due to the
immaturity of XML schema processors available. There is no guarantee that a given XML
schema processor will properly pass the processing instructions to an application, or, if it
does, that an application will be able to accept them or handle them properly.

Recommendation

The <appinfo> element MUST NOT be used.

7.3.10 Length

In X12 syntax standards the typical pattern regarding data maintenance for the length of data
elements is that they have consistently gotten longer. XML schema does not require a
maximum length. This report recommends not using fixed or maximum length except in the
case of coded values, where appropriate.

7.3.11 Namespaces

XML schemas allow for instance documents that have zero, one or many namespaces. The
namespace of an instance document is specified as a "target namespace" of the schema
document.

56

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

Benefits of Using No Namespace

« ltis simpler: there are fewer design decisions to be made, and instance
documents are more readable.

* Allows for use of "chameleon” design. In other words, when a schema that has
no targetNamespace is included in another schema, the components within the
included schema taken on the same namespace as the including schema -
therefore, they are "chameleons”.

Disadvantages of Using No Namespace

* Most XML processors cache schema components for validation by namespaces.
If no namespace is used, there will be no caching. Processing is therefore much
less efficient without namespaces.

* Most current XML schema designers are using hamespaces, so not using them
will go against convention and may likely cause several complications.

« More work is required to avoid result name collision, i.e. if there is an element in
the included schema that has the same name as an element in the including
schema, an error will result.

Benefits of Using One Namespace

» The vocabulary of an instance document is immediately recognizable.
» One namespace declaration does not significantly complicate an instance
document.

Disadvantages Using One Namespace

* The size of a single namespace for the whole of X12's XML implementation may
be rather large, even when a particular instance document uses a limited
number of components from the namespace. Processing efficiency is reduced if
a single, large namespace is used.

Benefits of Using Multiple Namespaces

» Namespaces can be used to categorize components.
» Helps to avoid name collision.
» ltis easy to distinguish "core components" from extensions.

Disadvantages of Using Multiple Namespaces

e Multiple namespaces lead to a more complex design.
Recommendation

The preliminary recommendation is to use a tiered, hierarchical approach to namespaces.
One core namespace could include components to all functional X12 subcommittees. Each
functional subcommittee (or other logical grouping) could have a unique namespace that
imports the common namespace. All instance document schemas related to the
subcommittee (or other logical grouping) could use that subcommittee namespace. Each
instance document schema could declare its own unique target namespace.

OCTOBER 2002

57

XML DESIGN ASC X12C-COMMUNICATIONS AND CONTROLS
REFERENCE MODEL SUBCOMMITTEE

58 OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

8. SUMMARY OF PROPOSED DESIGN
RULES

As noted earlier, this report envisions that a new ANSI ASC X12 standard would be created
based on the work of this Reference Model. That standard would in essence be the XML
equivalent of the current X12 syntax X12.6 standard. Just as the X12.6 standard deals with
general metadata and definitions as well as syntax issues, the new XML based standard
would do the same. Similarly, as there are X12 Design Rules and Guidelines that enforce
X12.6, there would be Design Rules and Guidelines that enforce the new XML syntax work.
Like X12.6, they would deal with metadata and definitions. However, due to the manner in
which this report proposes that the development process be conducted, they would not deal
with syntax issues. This section presents an outline of what the design rules might
incorporate and how they might be used.

This report envisions that the primary work of X12's Technical Assessment Subcommittee
and the industry oriented subcommittees would be to define standards for XML data content
and semantics according to the architectural framework described in this Reference Model.
These standards would be stored in a database maintained by X12's secretariat in much the
same way that the current X12 standards are stored in DISA's database. What is different in
the XML environment is that XML syntax output, in the form of W3C XML Schemas, would
be created from that database. The database contains the "source normative form" of the
standard, while eventually automated procedures would create the target or implementation
form of the standard. This has no direct equivalent in the X12 syntax environment.

In addition, most aspects of syntax that are defined in X12.6 are described by
recommendations such as XML and XML Schema that are developed by the World Wide
Web Consortium. The XML equivalent of X12.6 would describe how the database content
would be represented in these XML syntaxes based on the recommendations of the XML
syntax design presented in Section 7. In short, it would specify the target implementation
form of the standard. Since this aspect of the standard, from an X12 perspective, would be
applicable to producing database output, it would not be enforced by TAS and there would be
no need for corresponding design rules. The standard itself would provide sufficient
guidance to the secretariat to develop automated procedures to produce the XML schemas.
Organizations that wished to implement their XML syntax components following X12's design
could also use the X12.6 equivalent as a specification, but again there would be no need for
formal design rules since there would be no enforcement activity.

Therefore, the design rules would deal with metadata and definitions, enforcing the cor-
responding elements from the XML version of X12.6. They would be based on the high level
architecture described in Section 3 and the metadata and definitions described in Section 6.
X12's Technical Assessment Subcommittee would use this set of rules as it reviews new and
modified XML standards. It would incorporate rules such as:

A template slot must specify a MinOccurs value

A module may not contain another module

A block must contain at least one identity component
A component may not contain another component

This report envisions that such design rules would be developed in conjunction with the XML
equivalent of X12.6).

OCTOBER 2002

59

XML DESIGN ASC X12C-COMMUNICATIONS AND CONTROLS
REFERENCE MODEL SUBCOMMITTEE

(To clarify one minor point of potential confusion, the XML syntax aspect of the XML
equivalent of X12.6 would not, strictly speaking, constitute "production rules". Production
rules are generally applicable when there are defined source and target syntaxes, and rules
are defined to describe the transformation from one syntax to another. In the case of this
report, the source form is expressed in logical form only without a specific implementation
syntax. Therefore production rules are not applicable.)

60 OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN
SUBCOMMITTEE REFERENCE MODEL

9. CONTROL STRUCTURES

9.1 External Control Structures

Control information (analogous to the information provided in the ISA and GS segments) may
be included in envelope structures outside an ASC X12 XML document (the root element of
an XML instance document as defined in this specification). This is information that is
independent of the type of business document contained.

Preliminary requirements for information in the external control structure:

e Organizational routing (e.g., VAN ID)

e Internal routing

e Unique ID (detection of missing/duplicate documents)
* Information required for document processing

Examples of such information include:

» Sender/Receiver ID (e.g., ISA sender/receiver IDs)

* Internal routing (e.g., GS sender/receiver/application IDs)

» External routing IDs (e.g., e-mail address of sender/recipient)
» Control/sequence numbers (e.g., ISA/GS/ST control number)
» Date/time

9.2 Document Control Structure

ASC X12 XML documents have a document control structure, analogous to X12 ST/SE
segments. It shall be a well-formed XML document with a single root element.

Preliminary requirements for information in the document control structure:

» Identification of the message type of the document

» Demarcation of the beginning and ending of the document (e.g., in a data
stream)

* Internal routing (if not provided by external control structure)

9.3 Internal Control Structures

At the beginning of the ASC X12 XML document, related business relationship information is
given. This contains the type of information found in the X12 BEG-like segments. This may
be implemented using the first slot of the template or at the level of the root element (e.g., as
attributes). Application control and document identification information is included at this
level. Examples include:

¢ Unique business document ID information (e.g., date, time, instance number)

* Related business relationship information (e.g., purchase order number or
contract number related to an invoice or advance ship notice transaction)

OCTOBER 2002 61

XML DESIGN ASC X12C-COMMUNICATIONS AND CONTROLS
REFERENCE MODEL SUBCOMMITTEE

62 OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS

SUBCOMMITTEE

XML DESIGN
REFERENCE MODEL

ANNEX A: DEFINITIONS

Abstract types

Allow use of complex types in such a way that a single element
name can be used to represent various types in an XML
document instance

Annotation

Information for human and/or mechanical consumers. The
interpretation of such information is not defined in the XML
Schema specifications. The annotation element can contain
one or more <documentation> or <appinfo> elements.

AnyAttribute

XML Schema allows wildcards to be specified in attribute
declarations

AnyElement

XML Schema allows wildcards to be specified in content
models (using <any>)

Attribute

A name="value” field within an XML element, providing
information associated with that XML element

Attribute Declaration

An attribute declaration is an association between a name and
a simple type definition, together with occurrence information
and (optionally) a default value. The association is either
global, or local to its containing complex type definition.
Attribute declarations contribute to validation as part of
complex type definition validation, when their occurrence,
defaults and type components are checked against an attribute
information item with a matching name and namespace

Attribute Group

A set of attribute declarations, enabling re-use of the same set
in several complex type definitions

Attribute Group
Definition

An attribute group definition is an association between a name
and a set of attribute declarations, enabling re-use of the same
set in several complex type definitions

Built-in Datatypes

Built-in datatypes are those which are defined either in the
XML Schema specification (as primitive types) or in this
specification, and can be either primitive or derived

Character set

The encoding method for the data values of the document,
based on Unicode format.

Complex Type

An XML element type that allows nested elements in their
content and may carry attributes

Complex Type Definition

A complex type definition is a set of attribute declarations and
a content type, applicable to the attributes and children of an
element information item respectively. The content type may
require the children to contain neither element nor character
information items (that is, to be empty), to be a string that
belongs to a particular simple type or to contain a sequence of
element information items that conforms to a particular model
group, with or without character information items as well.

Complex type extension

Extension adds attributes, and adds elements to the end of the
content model of the base type.

Complex type restriction

Restriction limits a base type to a more restrictive set of valid
values.

Core Component

Refers to common elements that are generally useful,
reusable in different contexts.

Datatype

A datatype is a 3-tuple, consisting of a) a set of distinct
values, called its value space, b) a set of lexical
representations, called its lexical space, and c) a set of facets
that characterize properties of the value space, individual

values or lexical items.

OCTOBER 2002

63

XML DESIGN
REFERENCE MODEL

ASC X12C-COMMUNICATIONS AND CONTROLS
SUBCOMMITTEE

Default attribute values

Data values that imply a default value if they do not explicitly
appear in the XML instance document

Derived Data Types

Derived datatypes are those that are defined in terms of other
datatypes. A datatype is said to be derived by restriction from
another datatype when values for zero or more constraining
facets are specified that serve to constrain its value space
and/or its lexical space to a subset of those of its base type.
Every datatype that is derived by restriction is defined in
terms of an existing datatype, referred to as its base type .
base type s can be either primitive or derived

Element

A fundamental unit of XML information, which has an element
name, optional attributes, optional data value, and an
associated type definition. Elements may be nested, one inside
another.

Element Declaration

An element declaration is an association of a name with a type
definition, either simple or complex, an (optional) default value
and a (possibly empty) set of identity-constraint definitions.

Facet

A facet is a single defining aspect of a value space. Generally
speaking, each facet characterizes a value space along
independent axes or dimensions

Fixed attribute values

An attribute value that always has the same value

Globally defined

Attribute definitions that are defined at the highest level in the

attributes XML Schema document, so that the definitions can be reused.
Globally defined Element definitions that are defined at the highest level in the
elements XML Schema document, so that the definitions can be reused.
Groups XML Schema allows fragments of content models to be

named and referenced from multiple complex types.

Lexical Space

A lexical space is the set of valid literals for a datatype

Locally defined
attributes

Attributes that are not globally defined, and therefore the
definition can not be referenced (reused) in other contexts.

Locally defined elements

Elements that are not globally defined, and therefore the
definition can not be referenced (reused) in other contexts.

Mixed Content

A combination of child elements and character data nested
within an element

Named Types

Named types may be defined once and used many times.

Namespaces An XML namespace is a collection of names identified by a
URI reference, which are used in XML documents as element
types and attribute names

Notations Can be used to specify the type of a file (for example, a

graphics image) that is related to an XML document via an
external entity.

Primitive Data Types

A Primitive is a unique semantic entity, having a unique
semantic identifier. Primitive datatypes are those that are not
defined in terms of other datatypes; they exist ab initio

Processing instructions

Can be used to pass information to the processing application.

Simple Type

Simple types cannot have element content and cannot carry
attributes

Simple Type Definition

A simple type definition is a set of constraints on strings and
information about the values they encode, applicable to the
normalized value of an attribute information item or of an
element information item with no element children. Informally,
it applies to the values of attributes and the text-only content of
elements

Substitution groups

An element can be declared to be a substitute for another
element, the "head" element, allowing the new element to
appear anywhere the head element may appear.

64

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS

SUBCOMMITTEE

XML DESIGN
REFERENCE MODEL

Target namespace

The namespace of an instance document.

Type Derivation

XML Schema allows a type to be derived from another type (its
base type), either by extension or restriction.

Type Redefinition

XML Schema allows a schema author to redefine the types or
groups of another schema document.

Type Substitution

Allows a base type to be substituted by any derived type

Union types

The union operation is supported by XML Schema for element
types. For example, a code list may be defined as the union of
two other code lists.

Uniqueness constraint

Schema provides several mechanisms to enforce uniqueness
of elements or keys in an XML instance document.

User-derived Datatypes

User-derived datatypes are those derived datatypes that are
defined by individual schema designers

Value Space

A value space is the set of values for a given datatype. Each
value in the value space of a datatype is denoted by one or
more literals in its lexical space.

Wildcard

A wildcard is a special kind of particle that matches element
and attribute information items dependent on their namespace
name, independently of their local names

XML Schema

An XML document that defines the allowable content of a class
of XML documents. A class of documents refers to all
possible permutations of structure in documents that will still

confirm to the rules of the schema

OCTOBER 2002

65

XML DESIGN ASC X12C-COMMUNICATIONS AND CONTROLS
REFERENCE MODEL SUBCOMMITTEE

6 6 OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

ANNEX B: EXAMPLES FROM FINANCE
INVOICE PILOT

CICA — Flexible Modular Approach to XML Message Design
Invoice Example

Background

There are many design objectives for this architecture, but there are three at the highest-
level.

* Implementable “bullet” messages. Demanded is that the message represent the
complete semantic picture of what is required to participate in this business process,
without supplementary semantic qualification. Further, this requirement is for both
semantically complete and concise messages.

e Cross industry interoperability. This requirement demands a solution that provides a
mechanism for supporting the needs of multiple industries within the same overall
framework. In other words, supporting the needs for communities which are made
up of more than a single industry or a number of sub-industries, in such a manner as
to bring stability to the common information, and seamless support for managing the
difference required by industry/product.

e Autonomy. Many industries want to achieve interoperability, but do not want to
sacrifice their ability to provide timely solutions — autonomy. This solution must find a
way to support the spirit of the standard, while still enabling various industries the
latitude to include ‘proprietary’ components. This needs to be supported in a manner
that enables autonomy without sacrificing cross industry interoperability.

e Attractiveness. The sum total of the solution must provide definite benefits to the
community in achieving their overall objectives. In other words, the approach has to
represent a faster, cheaper and better way than building from the ground up. This
requirement places value on ease of use, minimization of entry barriers, and a
simple reuse philosophy.

Setting requirements at this level ensures solutions for SMEs.

Example background

Invoicing was deliberately selected for this example, because of its wide appeal and inherent
cross industry nature. Financial institutions have a lot to say about certain details, such as
the tally of dollars and payment details. Detail about the product provided or services
rendered are specified by the various trade groups. At every level, Invoicing is cross
industry.

Invoicing, from a business document design perspective, has two primary sources of
complexity — two conditions which make designing a business document complex.

» Business Process. Invoicing is done within more than one Business Process, with
different triggering events. One example is the Event based process, where an
Invoice is triggered based on a business action, such as the shipment of goods or
the delivery of services. Another example is Statement based, an Invoice triggered
by a time interval, like utility bills & credit card statements. In these two examples,
the overall high-level organization of the information is very different.

OCTOBER 2002

67

XML DESIGN

ASC X12C-COMMUNICATIONS AND CONTROLS

REFERENCE MODEL SUBCOMMITTEE

« Product. Invoices have two primary subjects, the dollars changing hands and the
documentation of the goods/services justifying the dollars. There is significant
variation in how to represent goods ordered from a catalog versus visiting nursing
care provided to a patient. This architecture must provide mechanisms for enabling
this natural variation in content, while still enabling the cross industry capabilities.

Based on Business Process, a number of Invoices have been identified, as described in
figure 1. Each row in the table represent a different business process need for an Invoice,
identified in the first column, followed by a column describing the Goods oriented use of the
Template, followed by the Service oriented use of the Invoice.

Template Goods Oriented Service Oriented

DeIivery Based Invoice generated upon single shipment Invoice generated upon service performed

Event Based Invoice generated upon single shipment t§ Invoice generated for multiple services at
multiple locations conclusion of event

Time Based Invoice generated for consolidated Invoice generated for service on timed basig
shipments (ie. Monthly)

Invoice generated on timed basis for
period shipments

Balance Forward Invoice generated for period shipments Invoice generated on timed basis with
with account balance account balance
Figure 1

68

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS

SUBCOMMITTEE

XML DESIGN
REFERENCE MODEL

Example Overview

The Example Invoice has systematically been decomposed into the requisite component
parts. In general terms, as shown in Figure 2, the basic layers start with the Template and
the Slots [shown at the top], then decomposes to a set of Modules [Middle Layer], and ending
with a set of Blocks [bottom layer]. Blocks are one of four types, depicted with subdivisions
within the lower layer, events, parties, locations and resources.

DeliveryBasedInvoice

e N

- N

+ InvoiceBusinessContextEven SellerSlot ConsolidatedFinancialSlo LineProductSlot
: :
BuyerSlot DeliverySlot | 2 PaymentinformatignSlot LineChargeSlof
»“‘g «.. . '-....... :.\: "-‘é

InvoiceBusinéssEventModul ShipmentModul

SellerModfuIe

YInvoiceAdmin@sinessEventModul $ SellerAdminModule

BuyerAdminModulek

C&nmodityLined@odsModule
J PaymentMethodModul | }

' \ 4
}o&ﬁ:in%r\giaIObligationModm

LindChargesModule

=

Buye/M dule

7 NT\\\ -y N]
} ; ostaIBNc\ \xm %c%
Documen}E(lent\Qlck\ - \ \\ N4
/ \ A\D\a\liveryBlock \\QII ceBlock
BasicIntervalBlock \ \\ \ \ V\ \
\ GeggraphicBlock h% esB‘oc
ExperienceBIoc | F\l\anciaIEAha\‘n#PartyBlock \ \ H
\ / \ / PhokReBlock TaXBI C}\
Reg\ul ted {artyBIock \ \
\ EMailBlock ACCO\" tB'\ ¢
BasicDrganizationalBloc
GoodsCommodityBlock
PersonBlock
QuantityBloc
Events Parties Locations Resources
Figure 2

In this DeliveryBasedInvoice example, there are a total of eight (8) slots, one of the Slots is
the BuyerSlot shown in Figure 1b at the lower left, within the Template layer.

Each Slot within the Template will have one or more Modules. The BuyerSlot in our example
has a BuyerModule and a BuyerAdminModule, shown in the lower left corner of the middle
layer and connected with the dashed red lines. These link between the Slots and the
Modules is conditional, Context identifiers determine when to use each Module.

OCTOBER 2002

69

m—ea>»r ovm-

;mmrCcCooL

XML DESIGN ASC X12C-COMMUNICATIONS AND CONTROLS
REFERENCE MODEL SUBCOMMITTEE

A Module is constructed from reusable components, Assemblies and Blocks. While Modules
are made from Assemblies and Blocks, but the characteristics of Modules is dramatically
different. Modules are Context specific in that Modules are at a level where they can be
mapped into an application system. Examples of Modules include: Buyer, Seller, Patient,
Student, etc. In contrast, Assemblies and Blocks are neutral constructs, composed based on
the need for the form — a Party with a First, Middle and Last Name. Assemblies are reusable
groupings of Blocks, so in practice you can use Blocks or Assemblies. This Figure 2
illustration shows the use of Blocks in building Modules. The BuyerModule is a complicated
Module, and is constructed with a number of Blocks, in some cases using the same Block
more than once for different purposes. This is shown in Figure 1b with the solid arrows,
pointing upward from the Block layer to the Module layer.

Example Specifics

In compliance with the CICA architecture, the Business Process determines how many
Invoices. This example focuses on a single Invoicing example, the case where for each
Action against an Order, an Invoice is generated — Delivery Based in Figure 1. This Invoice
example covers the case where an Order initiates the process, and for each Shipment of
Goods or Delivery of Services made against the Order, an Invoice is generated.

Enough detail is provided to illustrate the Architecture, although the contents are scaled back
for purposes of the example.

Template

The center of the architecture is the Template, and is the first of three constructs that are
semantically significant to the architecture itself. The Template is Business Process specific,
in that the Business Process determines its high-level composition and use. Therefore,
much of the Template metadata is designed to capture the business circumstances where
this Template is used, and how this template relates to other templates [the top half of figure
2]. Documenting the Business Process circumstances where this template is used to enable
locating, differentiating and facilitating proper Template use.

The second half of figure 2 specifies the Slots. Slots identify the Template composition at the
high level, in industry neutral or abstract terms. Templates, like the name implies, provide a
high level guide to the contents without directly containing the contents. The Slots are
determined based on the business process, and roughly answer the ‘who’, ‘what’, ‘when’,
‘where’, and ‘why’ questions about the business exchange. The ‘who’ is primarily about the
participants in the business exchange, which might be the participants in the document
exchange or might be more inclusive. The ‘what’ specifies the subject(‘s) of the message.
The ‘when’ specifies the event('s), past, present or future. The ‘where’ specifics pertinent
location(‘s). In general, the ‘why’ is specified by the document itself.

The level of the Slots, and the separation between the Template and the document contents,
together are a critical design component of the CICA architecture. This design becomes the
foundation for enabling both modular reuse & modular substitution.

In this DeliveryBasedInvoice example, Figure 2, the metadata specifically collects:
» Template Name, the name used to refer to this specific Template

« Template Family, the name for the class of Template, sometimes thought of as the
abstract superclass

* Business Process specifies the specific business process within which this specific
Template appears

e Business Process Family is the name for the set of peer business processes,
sometimes referred to as the abstract superclass for the Business Process

e Business Process Sub-Family is a subdivision of the Business Process Family,
within which this Template Family appears.

70 OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

Triggering Event Description is a description of the business condition, which
uniquely distinguishes use of this Template over others of the same Template
Family.

Responsible Subcommittee is the organization within X12 responsible for this
Template.

The Slots, are specified using the following:

Area is used to differentiate between Header information that applies to the entire
document, versus Detail information, which specifies the subject of the document,
versus potential Summary information.

Template Slot is the actual SlotSlot Description is free form text describing the
purpose of the Slot, the information the Slot is designed to represent

Slot Description is free form text describing the purpose of the Slot, the information
the Slot is designed to represent

TemplateName DeliveryBasedInvoice
TemplateFamily Invoice
BusinessProcess DeliveryBasedPayment
BusinessProcessFamily Payment
BusinessProcessSubFamily Invoicing
TemplateDescription Invoice generated upon delivery of service or shipment of goods
TriggeringEventDescription Each single shipment or delivery of service
Responsible Subcommittee F
Area TemplateSlot Slot Description Req't Min
H InvoiceBusinessContextEventSlot Specifies the Business Environment of the document M 1 1
H BuverSlot The Bwina Part M 1 1
H SellerSlot The Sellina Part/ M 1 1

DeliverySlot The Event detailing the execution of the reqd product M 1 1
H ConsolidatedFinancialot Total FinancialOblication M 1 1
H Pavmentinformatiolot Pavment Method o} 1 1
D LineProducSlot Srecifies the ProdudGoods orServicel o 1 1
D LineCharmeSlot Charmes associatedith sindle line (0]

Figure 2

OCTOBER 2002

71

XML DESIGN

ASC X12C-COMMUNICATIONS AND CONTROLS

REFERENCE MODEL SUBCOMMITTEE

Slot = InvoiceBusinessContextEventSlot

This Slot contains Event references, which includes specifying the unique reference
information for this specific Event, Invoice, in addition of previous Events relevant to this
business process. Modules defined for use in this Slot will specify these details.

Modules

A Module fits in a Template Slot, and therefore its contents must be compliant with the stated
purpose of the Slot. Multiple Modules may be developed to fit into the same Slot, provided
that the Module is not ‘the same’ as another Module, and that the Module fulfills the function
specified by the Slot in the Template. Determining which Module to use in a Slot is based on
Business Context.

In this example, there are two Modules specified for this slot, shown in Figures 3 & 4. The
first Module is the default Module, and is specifies Business level details about the
document, and in the case of Invoice that equates to the unique reference information for this
event, this Invoice, and previous events, the Purchase Order.

The second Module developed for this slot contains an additional event, the Contract, and
this Module is used in cases involving the US Federal Government, where there is a
requirement for additional administrative information.

InvoiceBusinessEventModule Assy/Block A/B Req't Min Max

InvoiceEvent DocumentEvent B:20 M 1 1

POEvent DocumentEvent B:20 M 1 1
Figure 3

InvoiceAdminBusinessEvent Assy/Block A/B Req't Min Max

Module

InvoiceEvent DocumentEvent B:20 M 1 1

POEvent DocumentEvent B:20 M 1 1

ContractEvent DocumentEvent B:20 M 1 1
Figure 4

72

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS

SUBCOMMITTEE

XML DESIGN
REFERENCE MODEL

Slot = Buyer

This Slot specifies a primary Party to this exchange. At the business process level, the Buyer
plays a number of sub-roles. The primary function, Buyer, ‘implies’ a number of
responsibilities — receiving the Product [goods or service], making payment, and the initiator.
In practice, each of these sub-functions can have different Parties, Locations, and Contact
points. But, these are all associated with the ‘Buyer’.

Modules

The first Module Specified is for the default Buyer, which includes the basic sub-roles
described above. In Figure 5, the BuyerModule is specified, with a Usage Name [first
column], the Assembly or Block name used [column 2], designator [A=Assembly, B=Block,
plus unit number in column 3], followed by requirement, minimum and maximum use.

BuyerModule Assy/Block Name A/B Req't Min Max
Buyer FinancialPagtAssy A:20 M 1 1
BuyerContact ContactAsg A:10 (0] 1 1
ShipTo DeliveryPart/Assy A:21 (0] 1 1
ShipToContact ContactAsg A:10 (@] 1 1
BillTo ActorParyAssy A:22 (0] 1 1
BillToContact ContactAsg A:10 (0] 1 1

Figure 5

The second Buyer, is like the first Buyer, only it contains an additional sub-role, the recipient
of the Invoice, and requisite Contact. The Module is used in administrative intensive
environments, such as when dealing with the US Federal Government. In this business
context, the bar is raised in terms of required information, and pieces of information

considered optional in other environments are now considered Mandatory.

BuyerAdminModule Assy/Block Name A/B Req't Min Max
Buyer FinancialPagtAssy A:20 M 1 1
BuyerContact ContactAss A:10 O 1 1
ShpTo DeliveryPariyAssy A21 o 1 1
ShpToContact ContactAss A:10 O 1 1
BillTo ActorParyAssy A:22 o 1 1
BillToContact ContactAss A:10 O 1 1
Recievelnvoice ActorParyAssy A:22 O 1 1
RecievelnvoiceContact ContactAssg A:10 (e] 1 1

Figure 6

OCTOBER 2002

/3

XML DESIGN
REFERENCE MODEL

ASC X12C-COMMUNICATIONS AND CONTROLS

SUBCOMMITTEE

Slot= Seller

Modules

SellerModule

The Seller Slot is the place where the Seller is specified.

The first, shown in Figure 7, is the Default Module and contains the basic information to
support the basic business process. This Module specifies two Parties, the actual Seller,
and the optional Seller Contact.

SellerModule Assy/Block A/B Req't Min Max
Seller ActorPartyAssy A:22 M 1 1
SellerContact ContactAssy A:10 (0] 1 1

SellerAdminModule

Figure 7

The Administrative intensive Seller, Figure 8, contains an additional sub-role, the ship from,
that is mandatory in the business exchange is with the US federal government.

SellerAdminModule Assy/Block A/B Req't Min Max
Seller ActorPartyAssy A:22 M 1
SellerContact ContactAssy A:10 (0] 1
ShipFrom DeliverParyAssy A:21 M 1
ShipFromContact ContactAssy A:10 O 1

Figure 8

74

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN
SUBCOMMITTEE REFERENCE MODEL

Slot = DeliverySlot

This slot specifies the Event when the shipment was made or the services were rendered.
Module

ShipmentModule

This Module specifically documents the shipment of goods, which is the primary topic area

this example covers. ltis likely that specifying the Event of Services Delivered will require a
different Module.

ShipmentModule Assy/Block A/B Req't Min Max
Shipment GoodsCommodity B:40 M 1 1
ShipmentQuantity Quantity B:41 O 1 1
Carrier BasicOrganization B:3 O 1 1
DeliveryEvent IntervalEvent B:30 O 1 1

Figure 9

OCTOBER 2002 75

XML DESIGN

ASC X12C-COMMUNICATIONS AND CONTROLS

REFERENCE MODEL SUBCOMMITTEE

Slot = ConsolidatedFinancial

This slot contains the consolidation of expenses associated with this invoice, including
subtotals and totals. It is likely that only a few Modules will be defined for this Slot, in that its
purpose is to provide a complete tally of changes, independent of the details of the product
[goods or service].

Module

ConsolidatedFinancialModule

This example is focused on the simplest case of Goods, so this module is specific to the
needs of Goods charges.

ConsolidatedFinancialMoc Assv/Block AR Redt Min Max
PradiictClaim Claim R-AN M 1 1
PradiictAlllwancec Allmwances R'A1 @] 1 1
PradiirtCharnec Charnec R‘R? @] 1 1
PradiirtTay Tay R-AR @] 1 1
FreinhtClaim Claim R-AN @] 1 1
FreinhtAllnwancag Allnwances R-A1 (@] 1 1
FreinhtCharnac Charnes R'R?2 (@] 1 1
FreinhtTayx Tayx R'AR (@] 1 1
TntalClaim Claim R-AN M 1 1
TntalAllnwances Allnwances R-A1 (@] 1 1
TntalCharnes Charnes R'R?2 (@] 1 1
TntalTax Tayx R'AR (@] 1 1

Figure 10

Slot = LineProductSlot

The Slots, LineProductSlot & LineChargeSlot , comprise the Detail Area of the template.
Together, they represent a “line item”.

Modules

CommodityLineGoodsModule specifies the details required by the LineProductSlot for the
case where the product is a Goods type of product. It is anticipated that either for each
business sector or other high level grouping of industries, there will need to be different
Modules.

CommodityLineGoods Assy/Block A/B Req't Min Max
OrderedGoods GoodsCommaodity B:40 M 1 1
OrderQuantity Quantity B:41 M 1 1

Figure 11

76

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

Slot = LineChargeSlot

The LineChargeSlot is companion to the LineProductSlot, in that the two as a unit make up
the secondary subject of the Invoice, also known as the Detail Area. The primary subject is
the Invoice charges, but the supporting detail for those charges are specified in these two
Slots.

Modules

LineChargesModule specifies the charges associated with the companion Modules
occupying the LineProductSlot.

LineCharges Assy/Block A/B Req't Min Max
ProductPricing Claim B:60 M 1 1
ProductAllowances Allowances B:61 (@) 1 1
ProductCharges Charges B:62 (@) 1 1
ProductTax Tax B:63 (@) 1 1

Figure 12
Assemblies

In the Invoice example, the most complex structuring case involves the Buyer Module. In
that case, a number of types of groupings are required, for a few different purposes. The
general cases where groupings are required are as follows:

1. To associate together a list of choices, which is the motivation behind the Elocation
Assembly.

2. Grouping reusable units.

3. Groupings made for technical reasons, to avoid having the same construct used
multiple times at the same level, with different semantic purposes

4. Groupings made for documentation clarity, using hierarchy to explicitly associate
semantically related contents.

In this example, Figure 13, lists a set of groupings established in support of the Buyer
Module.

OCTOBER 2002

77

XML DESIGN
REFERENCE MODEL

ASC X12C-COMMUNICATIONS AND CONTROLS
SUBCOMMITTEE

In general, any number of aggregations can be created between the Module and the Block,
for either technical or documentation purposes. This architecture supports this need two
ways, creating reusable Assemblies or with hierarchy in the Module. This example uses
Assemblies. Each of the five (5) Assemblies listed in Figure 13, aid in solving technical
problems associated with constructing the Buyer Module.

The Elocation Assembly groups the Blocks into an Assembly for the purposes of Choice.
The Choice is represented in the Req't column with the value of A for Any. Exclusive, or X, is
also supported.

The other groupings are also for technical reasons, to ensure that the various Party/Location
constructs are semantically specific.

FinancialPagAssy:20 Assy/Block A/B Req't Min Max
FinancialExchaoeParv FinancialExchaoe B:1 M 1
Address PostalBlock B:10 O 1
ElectronicContact ELocationAss A:10 C 1

ELocationAsg:10 Assv/Block A/B Reo't Min Max
BuverPhone PhoneBlock 12 A 1
BuverFax PhoneBlock 12 A 1
RuverFmail FMailRlnck 14 A 1
CellPhone PersonBlock 12 A 1
PaaerNumber PhoneBlock 12 A 1

DeliveryPartyAssy:21 Assy/Block A/B Req't Min Max
DeliveryParty BasicOpanizationBlock B:3 O 1
DeliveryAddress DeliveryBlock B:11 O 1

ActorPartyAssy:22 Assy/Block A/B Req't Min Max
Pary BasicOpanizationPait B:3 O 1
Postal PostalBlock B:10 1
ElectronicContact ELocationAsy A:10 C 1

ContactAssy:23 Assy/Block A/B Req't Min Max
Contact PersonBlock B:2 O 1
EContact ELocationAsy A:10 M 1

Figure 13

78

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN
SUBCOMMITTEE REFERENCE MODEL

Blocks

Party Blocks

Party Blocks, as illustrated in Figure 14, show how they are inter-related. This relationship as
hierarchical, because the point is to create subdivision in them, so that a user can subset the
dictionary, using high-level criteria, thus reducing the answer set into a manageable size list
for final selection.

Party Blocks

Organizations Individuals

Financial Char Req’ Max Person Block:2 Char Req’ Max
Exchange Flag mt Occr Flag mt Occr
Party Block:1 Flag Flag
Name Identity M 1 Given Name Identity M 1
Trade ID Identity M 1 Middle Name Identity M 1
Group ID Identity O 1 Surname Identity M 1
Prefix Identity (@] 1
Regulated Char Req’ Max
Party Block:5 Flag mt Occr Suffix Identity 0 1
Flag
Regulation Identity M 1
Authority
Regulator ID Identity M 1
Basic Char Req’ Max
Organization Flag mt Occr
Party Block:3 Flag
Name Identity M 1
Trade ID Identity M 1
Figure 14

OCTOBER 2002 79

XML DESIGN

REFERENCE MODEL

ASC X12C-COMMUNICATIONS AND CONTROLS
SUBCOMMITTEE

Blocks

Resources

Continued

Resource blocks include all of the things of Value, which are used in routine business
Specifically, these include both the Products [Goods & Services] and the

Resources Blocks

transactions.
Money.
Claim Block:60 Char Req’ Max
mt
Gross Amount Identity M 1
Net Amount Identity M 1
Currency Identity O 1
Terms Char O 1
Allowance Char Req’ Max
Block: 61 mt
Type Identity M 1
Amount Identity M 1
Rate Identity O 1
Currency Identity (0] 1
Terms Char o 1
Charges Block: Char Req’ Max
62 mt
Type Identity M 1
Amount Identity M 1
Rate Identity O 1
Currency Identity (0] 1
TAX Block: 63 Char Req’ Max
mt
Type Identity M 1
Amount Identity M 1
Rate Identity O 1
Currency Identity (0] 1
Account Block: Char Req’ Max
64 Flag mt Occr
Flag
Organization Identity M 1
No.
Account Identity 1
Type Char 1

Goods Commodity | Char Flag | Req’ Max
Block:40 mt Occr

Flag

Marking/Tracking Identity M 1

#

Name Identity M 1

Measurements Char o 1

Commodity Char (0] 1

Safety Information Char O 1

Quantity Block: 41 Char Flag | Req’ Max
mt Occr
Flag

TTL Required Identity M 1

Quantity

Current Activity Identity M 1

Quantity

Net Activity Identity O 1

Quantity

Balance Quantity Identity (0] 1

Figure 15

80

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

Continued

Blocks

Location

Location Blocks are used to specify each type of possible location, answering the question
“Where”. These are first, subdivided by physical versus logical or electronic Location.

Location Blocks

Physical Location Blocks | Electronic Location Blocks

L
Postal Block:10 Char Req’ Max Phone Block:12 Char Req’ Max
mt mt

Street Address Identity M 1 Phone Number Identity M 1
Building Name | Identity | M 1 EMail Block:14 Char Req’ Max
City Identity (¢] 1 mt
State Identity o 1 Email Address Identity M 1
Postal Identity (¢] 1
Country Identity O 1

Delivery Char Req’ Max

Block:11 mt
Street Address Identity M 1
Building Name Identity M 1
Sub-location Identity (@] 1
City Identity o 1
State Identity O 1
Postal Identity (¢] 1
Country Identity O 1

Geographic Char Req’ Max

Block:15 mt
Longitude Identity M 1
Latitude Identity M 1

Figure 16

OCTOBER 2002

81

XML DESIGN

REFERENCE MODEL

ASC X12C-COMMUNICATIONS AND CONTROLS

SUBCOMMITTEE

Continued

Blocks

Events

Event Blocks answer the When question. Events are first subdivided by whether they cover
an interval or a basic event, shown in Figure 17, and attempts to add more detail than has
been covered by the Invoice work for illustrative purposes.

Event Blocks

Basic Events

Interval Events

EVZr?tC;:EiE'tZO Char Ri?t Max Basic Interval Char Req’ Max
) Event Block:30 mt
Document ID Identity M 1 From Date Identity M 1
Date Identity M L To Date Identity M 1
Time Identity (0] 1
Experience Char Req’ Max
Block:31 mt
From Date Identity M 1
To Date Identity M 1
Status Char M 1
Attainment/Cert | Char (0] 1
ificate
Figure 17
Components

Components are not detailed here, pending ongoing work within the Finance to associate the
content requirements in this Invoice example to the content specified by ebXML Core

Components.

82

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS

SUBCOMMITTEE

XML DESIGN
REFERENCE MODEL

Flexible Modular Architecture

The Template linked with Modules is the first step in enabling the flexible modular
architecture. This establishes the backbone for modular substitution, which allows a new
level of autonomy over previous ‘kitchen sink’ approaches. Kitchen sink approaches are
motivated by the recognition that related contents are related, however, having only one way
to unite them forces a unproductive combining effort, resulting in a single ambiguous unit —
kitchen sink. CICA recognizes the need to relate, related constructs, and enables the need
with layers of abstraction. At this level, the Slot is the abstraction layer, the Module is the
specific. Multiple, implementable Modules logically fit into the same place in the template,
the Slot. At the time the Modules are linked with Slot, the Context conditions where the use
of the Module is determined are specified.

Document Name DeliveryBasedGoodsInvoiceDocument
Template Name DeliveryBasedInvoiceTemplate
TenplateFamiv Invoice
BusinessProcess DelivervBasedPement
BusinessProcessFamil Pavrment
BusinessProcessSubFawmil Invoicina
TenmplateDescition Invoiceaenerated pon delivew of service or sliment ofaoods
TriacerinaEventDescmtion Each sinle shioment or deliver of service
Rewonsible Subcommittee F
A Context C/V Con | Con
r u text text R M M
e TemplateSlot S CNV | CIV Module e [a
a a q‘ n X
9 t
e
H InvoiceBusinessCo| D InvoiceBusinessEv| M 1 1
ntextEventSlot entModule
H InvoiceBusinessCo| C 8:US Gov InvoiceAdminBusi | M 1 1
ntextEventSlot nessEventModule
H BuyerSlot D BuyerModule M 1 1
H BuyerSlot C 8:US Gov BuyerAdminModu | M 1 1
la
H SellerSlot D SellerModule M 1 1
H SellerSlot C 8:US Gov SellerAdminModul | M 1 1
(=}
H DeliverySlot C 2:goods ShipmentModule M 1 1
H ConsolidatedFinan| D ConsolidatedFinan| M 1 1
rial<nt cialMandiile
H Paymentinformatio| D PaymentModule (0] 1 1
Nn<Ant
D LineProductSlot D 2:commodity CommodityLineGo | O 1 1
ndcMndiila
D LineChargeSlot D 2:goods LineChargesModul| O
[~}
Figure 18

OCTOBER 2002

83

XML DESIGN

REFERENCE MODEL

ASC X12C-COMMUNICATIONS AND CONTROLS

SUBCOMMITTEE

Documents

Documents are largely derived from the Module linked Template, where for each Slot,
Context is specified, thus resulting in a “bullet” document. This is a semantically explicit and
concise Document, for use within context. Figures 19 and 20 show Documents, derived from

specifying Slot level Context, from the same Template.

Document Name

DeliveryBasedGoodsInvoiceDocument

Template Name

DeliveryBasedInvoiceTemplate

TenplateFamiy

Invoice

BusinessProcess

DeliveryBasedPgment

BusinessProcesamily

Pa/ment

BusinessProcessSLdnfily

Invoicing

TenplateDescnition

Invoicegenerated pon delivey of service or sliment ofgoods

TriggeringEventDesciition

Each simle shbment or delivey of service

Regonsible Subcommittee F
Area TemplateSlot Usage Context C/V Conte Conte Module Req't Min Max
xt CIV xt CIV
H InvoiceBusinessContextEvent D InvoiceBusinessEventModule M 1 1
Slot
H BuyerSlot D BuyerModule M 1 1
H SellerSlot D SellerModule M 1 1
H DeliverySlot [} 2:goods ShipmentModule M 1 1
H ConsolidatedFinancialSlot D ConsolidatedFinancialModule M 1 1
H PaymentinformationSlot D PaymentModule o 1 1
D LineProductSlot D 2:commodity CommodityLineGoodsModule o 1 1
D LineChargeSlot D 2:goods LineChargesModule o
Figure 19

84

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS

SUBCOMMITTEE

XML DESIGN

REFERENCE MODEL

DocumentName

DeliveryBasedAdmininvoiceDocument

TemplateName

DeliveryBasedInvoiceTemplate

TemplateFamily

Invoice

BusinessProcess

DeliveryBasedPayment

BusinessProcessFamily

Payment

BusinessProcessSubFamily

Invoicing

TemplateDescription

Invoice generated upon delivery of service or shipment of goods

TriggeringEventDescription

Each single shipment or delivery of service

Responsible Subcommittee F
Con Con
A U text text R
r s CIV CIV e M M
e TemplateSlot a Context C/V Module o} i a
a g ' n X
e t
H InvoiceBusinessC | C 8:US Gov InvoiceAdminBusi | M 1 1
ontextEventSlot nessEventModule
H BuyerSlot C 8:US Gov BuyerAdminModu | M 1 1
le
H SellerSlot C 8:US Gov SellerAdminModu | M 1 1
le
H DeliverySlot C 2:goods ShipmentModule M 1 1
H ConsolidatedFinan| D ConsolidatedFinan| M 1 1
cialSlot cialModule
H Paymentinformati | D PaymentModule (0] 1 1
onSlot
D LineProductSlot D 2:commodity CommodityLineG O 1 1
oodsModule
D LineChargeSlot D 2:goods LineChargesModu | O
le
Figure 20

OCTOBER 2002

85

XML DESIGN ASC X12C-COMMUNICATIONS AND CONTROLS
REFERENCE MODEL SUBCOMMITTEE

86 OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS

SUBCOMMITTEE

XML DESIGN
REFERENCE MODEL

ANNEX C: CORE COMPONENTS
CONTEXT CATEGORIES

In keeping with ASC X12's goal to align with the ebXML Core Components work, the
following table and descriptive text are reproduced from Section 6.2.2 of the UN/CEFACT —
ebXML Core Components Technical Specification, Part 1 (8 February 2002, Version 1.8).
The UN/CEFACT — ebXML Core Components Technical Specification is copyrighted by
UN/CEFACT and these excerpts are reproduced with that body’s permission.

Copyright © UN/CEFACT 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing the copyright notice or
references to UN/CEFACT except as required to translate it into languages other than English.

Note: The URL for the full document is
http://www.unece.org/cefact/ebxml/ebXML _CCTS Partl V1-8.pdf

A comprehensive list of values must be specified for each context category. The ebXML CC
specification has identified one or more available sources for each category. X12 plans to
identify an "X12 selection" for the context categories that have multiple resources.

6.2.2 Approved Context Categories
Table 6-4 contains the eight approved Context Categories.

[C32] When describing a specific Business Context, a set of values will be assigned to the
business situation being formally described.

[C33] Applied Business Context will be from the list of approved context categories.

Table 6-4. Approved Context Categories

Business Process

The business process as described using the ebXML
Catalogue of Common Business Processes as extended by
the user.

Product Classification

Factors influencing semantics that are the result of the goods
or services being exchanged, handled, or paid for, etc. (e.g.
the buying of consulting services as opposed to materials)

Industry Classification

Semantic influences related to the industry or industries of the
trading partners (e.g., product identification schemes used in
different industries).

Geopolitical

Geographical factors that influence business semantics (e.g.,
the structure of an address).

Official Constraints

Legal and governmental influences on semantics (e.g.
hazardous materials information required by law when
shipping goods).

Business Process Role

The actors conducting a particular business process, as
identified in the Catalogue of Common Business Processes.

Supporting Role

Semantic influences related to non-partner roles (e.g., data
required by a third-party shipper in an order response going
from seller to buyer.)

System Capabilities

This context category exists to capture the limitations of
systems (e.g. an existing back office can only support an
address in a certain form).

OCTOBER 2002

87

XML DESIGN

ASC X12C-COMMUNICATIONS AND CONTROLS

REFERENCE MODEL SUBCOMMITTEE

6.2.2.1 Business Process Context

In describing a business situation, generally the most important aspect of that situation is the
business activity being conducted. Business Process Context provides a way to
unambiguously identify the business activity. To ensure consistency with business process
activities, it is important to use a common point of reference. The definitive point of reference
for international standards is the UN/CEFACT Catalogue of Common Business Processes

[C34] Assigned Business Process Contexts shall be from the standard hierarchical
classification: provided as part of the UN/CEFACT Catalogue of Common Business
Processes.

[C35] Business Process Context values may be expressed as a single business process at
any level, or may be expressed as a set of business processes at any level.

[C36] Business Process Context values may be taken from extensions to the business
processes described in the Catalogue of Common Business Processes as provided for in
that document.

[C37] When business process extensions are used, they shall include full information for
each value sufficient to unambiguously identify which extension is providing the value used.

6.2.2.2 Product Classification Context

The Product Classification Context describes those aspects of a business situation related to
the goods or services being exchanged by, or otherwise manipulated, or concerned, in the
business process. Recognised code lists exist that provide authoritative sources of product
classification contexts.

[C38] A single value or set of values may be used in a Product Classification Context.

[C39] If a hierarchical system of values is used for Product Classification Context, then these
values may be at any level of the hierarchy.

[C40] If more than one classification system is being employed, an additional value specifying
which classification scheme has supplied the values used shall be conveyed.

[C41] Product classification context code values shall be taken from recognised code lists to
include:

* Universal Standard Product and Service Specification (UNSPSC)
e Custodian: Electronic Commerce Code Management Association (ECCMA)
» Standard International Trade Classification (SITC Rev .3)
* Custodian: United Nations Statistics Division (UNSD)
e Harmonised Commodity Description and Coding System (HS)
e Custodian: World Trade Organization (WTO)
» Classification Of the purposes of non Profit Institutions serving households (COPI)
» Custodian: UNSD (This provides a mapping between the first three.)

6.2.2.3 Industry Classification Context

The Industry Classification Context provides a description of the industry or sub-industry in
which the business process takes place.

[C42] An Industry Classification Context may contain a single value or set of values at any
appropriate level of the value hierarchy.

[C43] The Industry Classification Context value hierarchy must be identified.

[C44] Industry Classification Context code values shall be taken from recognised code lists to
include:

88

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

* International Standard Industrial Classification (ISIC) -- Custodian: UNSD
e Universal Standard Product and Service Specification (UNSPSC) Top-level Segment
[digits 1 and 2] used to define industry. --Custodian: ECCMA

[Note] There are many other industry classification schemes that may be used for Industry
Classification Context.

6.2.2.4 Geopolitical Context

Geopolitical Contexts allow description of those aspects of the business context that are
related to region, nationality, or geographically based cultural factors.

[C45] Geopolitical Context shall consist of appropriate continent, economic region, country,
and region identifiers.

[C46] Geopolitical Regional Classification may associate one or more values with any
business message or component. are related to region, nationality, or geographically based
cultural factors. country, and region identifiers. any business message or component.

[C47] Geopolitical Regional Classification shall employ the following hierarchical structure:

Global
[Continent]
[Economic Region]
[Country] - ISO 3166.1
[Region] - ISO 3166.2

[C48] At any level of the Geopolitical Regional Classification hierarchy, a value may be a
single value, a named aggregate, or cross-border value.

[C49] Geopolitical Regional Classification hierarchy values shall structured as follows:

e Single Value: A single value indicating a single continent, economic region, country,
or region, depending on position within the hierarchy.

* Named Aggregate: A related group of values (which may themselves be single
values, named aggregates, or cross-border pairs of values), which have been related
and assigned a name. A hamed aggregate contains at least two values.

* Cross-Border: One or more pairs of values, designated To, From, or Bi- directional,
indicating the direction of cross-border context. Values may be named aggregates or
single values.

[Example] The following example shows an extract of the basic, single-value hierarchy of
recommended values, based on the common ISO 3166.1 Country Codes. (The value at the
top of any hierarchy is always understood to be Global.)

Europe
Eastern Europe
AL — ALBANIA
AM — ARMENIA

[C50] Points in the Geopolitical Regional Classification hierarchy shall be specified by the use
of the node value, or by the full or partial path.

[C51] The full path of the Geopolitical Regional Classification hierarchy must be used to
understand the hierarchy when complex constructs are employed.

[C52] A single-point specification is understood to inherit all of the properties of the single-
value hierarchy except where otherwise specified.

[C53] Geopolitical Values will be taken from 1SO 3166.1 and 3166.2

OCTOBER 2002

89

XML DESIGN

ASC X12C-COMMUNICATIONS AND CONTROLS

REFERENCE MODEL SUBCOMMITTEE

6.2.2.5 Official Constraints Context

The Official Constraints Context category describes those aspects of the business situation
that result from legal or regulatory requirements and similar official categories. This category
contains two distinct parts:

* Regulatory and Legislative. These are normally unilateral in nature and include such
things as customs.

» Conventions and Treaties. These are normally bi- or multilateral agreements and as
such are different from regulatory and legislative constraints.

[C54] The Official Constraints Context will consist of at least two values:
» Identification of the legal or other classification used to identify the context values.

« Identification of the official constraint itself. These values may represent a
hierarchical structure depending on the official constraints system being referenced.

Because there is no known global classification of all Official Constraints Contexts as used
here, any implementation must provide a set of recognised official constraints classifications
for use within the appropriate Core Components Registry implementation.

[C55] Individual Core Component implementations shall register used official constraint
classification schemes with the appropriate supporting Core Components Registry
implementation.

6.2.2.6 Business Process Role Context

The Business Process Role Context describes those aspects of a business situation that are
specific to an actor or actors within the business process. Its values are taken from the set of
Role values provided by the Catalogue of Common Business Processes. A Business
Process Role Context is specified by using a value or set of values from this source.

[C56] Business Process Role Context values shall be taken from an approved list provided
by the business process model library being employed.

[C57] The UN/CEFACT Catalogue of Common Business Processes shall be the definitive
source of Business Process Role Context values for all UN/CEFACT Business Information
Entities.

6.2.2.7 Supporting Role Context

The Supporting Role Context identifies those parties that are not active participants in the
business process being conducted but who are interested in it. A Supporting Role Context is
specified with a value or set of values from a standard classification.

[C58] Supporting Role Context values shall be taken from the UN/EDIFACT Code List for DE
3035 Party Roles.

[Note] Users are cautioned that duplication exists in the current version of the required code
list. UN/CEFACT will review this code list to clarify duplicates and identify non- Supporting
Role Context values.

6.2.2.8 System Capabilities Context

This category identifies a system, a class of systems or standard in the business situation.
The System Capabilities Context requires a least one pair of values: an identification of the
classification scheme being used and a value from that scheme. A valid System Capabilities
Context may include more than one such pair of values.

90

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS

SUBCOMMITTEE

XML DESIGN

REFERENCE MODEL

[C59] Systems Capabilities Context values shall consist of pairs of values. Each pair shall be
comprised of an identification of the referenced classification scheme and the value(s) being

employed.

[Note] There is no known classification of all types of information systems and standards. It
is recommended that a mechanism for the registration of system and standard names be
provided by the ebXML registry, as valid values for the System Capabilities Context.

Table 6-1 Permissible Representation Terms

Representation
Term

Definition

Links to Core
Component

Type

Amount

A number of monetary units specified in a
currency where the unit of currency is explicit
or implied.

Amount. Type

Code

A character string (letters, figures or symbols)
that for brevity and / or language independence
may be used to represent or replace a definitive
value or text of an attribute. Codes usually are
maintained in code lists per attribute type (e.g.
colour).

Code. Type

Date

A day within a particular calendar year (ISO
8601).

Date Time. Type

Date Time

A particular point in the progression of time
(ISO 8601).

Date Time. Type

Graphic

A diagram, graph, mathematical curves, or
similar representation

Graphic. Type

Identifier

A character string used to establish the identity
of, and distinguish uniquely, one instance of an
object within an identification scheme from all
other objects within the same scheme.

[Note: Type shall not be used when a person or
an object is identified by its name. In this case
the Representation Term “Name” shall be used.]

Identifier. Type

Indicator

A list of two, and only two, values that indicate
a condition such as on/off; true/false etc.
(synonym: “Boolean”).

Indicator. Type

Measure

A numeric value determined by measuring an
object. Measures are specified with a unit of
measure. The applicable unit of measure is
taken from UN/ECE Rec. 20.

Measure. Type

Name

A word or phrase that constitutes the
distinctive designation of a person, place, thing
or concept.

Text. Type

Percent

A rate expressed in hundredths between two
values that have the same unit of measure.

Numeric. Type

Picture

A visual representation of a person, object, or
scene

Picture. Type

Quantity

A number of non-monetary units. It is
associated with the indication of objects.
Quantities need to be specified with a unit of
quantity.

Quantity. Type

Rate

A quantity or amount measured with respect to
another measured quantity or amount, or a
fixed or appropriate charge, cost or value e.g.
US Dollars per hour, US Dollars per Euro,
kilometre per litre, etc.

Numeric. Type

OCTOBER 2002

91

XML DESIGN

REFERENCE MODEL

ASC X12C-COMMUNICATIONS AND CONTROLS

SUBCOMMITTEE

Text A character string generally in the form of Text. Type
words of a language.

Time The time within a (not specified) day (ISO 8601). | Date Time. Type

Value Numeric information that is assigned or is Numeric. Type

determined by calculation, counting or
sequencing. It does not require a unit of
quantity or a unit of measure

In addition to permissible representation terms for Core Components, there are
also permissible representation terms for Aggregate Core Components and Core
Component Types. Table 6-2 contains the permissible representation terms that
apply to Aggregate Core Components or Core Component Types.

[C31]

The Representation Term for Aggregate Core Components or Core

Component Types shall be one of the list of permissible Aggregate Core

components or Core Component Type Representation Terms

Table 6-2 Permissible Representation Terms for Aggregate Core
Components or Core Component Types

Representation

Definition

Links to Core

Content is the first information entity in a
Core Component Type

Term Component
Type

Details The expression of the aggregation of Core Not Applicable
Components to indicate higher levelled
information entities

Type The expression of the aggregation of Core Not Applicable
Components to indicate the aggregation of
lower levelled information entities to become
Core Component Types. All Core Component
Types shall use this Representation Term

Content The actual content of an information entity. Used with the

Content
Components of
Core Component
Types

92

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

ANNEX D: BACKGROUND

1.0 Background

The Extensible Markup Language (XML) was developed by the World Wide Web Consortium
(W3C), the de facto standards body for the Internet and the World Wide Web. The first
working draft paper on the concept of XML was published 14 November 1996. The original
goal was, "...to enable SGML to be served, received, and processed on the Web in the way
that is now possible with HTML." A primary design consideration was to design XML, "...for
ease of implementation, and for interoperability with both SGML and HTML." Much of the
original concept was applied to using XML as a means for graphical communication. The
idea of its use for conducting EDI was applied later when the first studies were done on this
subject in late 1997. Early work on XML/EDI was conducted both jointly and independently
by ANSI ASC X12, UN/CEFACT, CommerceNet, and the XML/EDI Group as well as other
organizations. The goals of XML/EDI as defined by the XML/EDI Group are:

* To deliver unambiguous and durable business transactions via electronic means
» Utilize existing systems and processes

* Protect the investment in traditional EC/EDI

* Provide a migration path to next generation XML/EDI systems

» Use existing business processes as implemented

» Facilitate direct interoperation in an open environment

In November 1999, work began on the ebXML project, a joint UN/CEFACT and OASIS
initiative, whose mission was to provide an open XML-based infrastructure enabling the
global use of electronic business information in an interoperable, secure, and consistent
manner by all parties. The project concluded in May 2001 and delivered a modular suite of
specifications that enable enterprises to conduct business over the Internet. The
specifications address the following areas:

» Messaging Services

* Registries and Repositories

* Collaborative Protocol Profile

* Implementation, Interoperability, and Conformance
e Core Components and Business Process Models

The ebXML specifications are currently being transitioned to UN/CEFACT and OASIS for the
purpose of developing global electronic business standards.

X12 began work on XML/EDI in 1998 with the creation of an ad-hoc XML work group that
transitioned to X12C/TG3. X12C/TG3 in conjunction with CommerceNet produced a paper
entitled “Preliminary Findings and Recommendations on the representation of X12 Data
Elements and Structures in XML”. In addition to this collaborative effort, X12C/TG3
produced a technical white paper providing additional information on using XML to represent
business exchanges. In February 2000, the X12 Steering Committee chartered the X12 XML
Task Group to develop recommendations for the Steering Committee in conjunction with the
X12 subcommittees on XML. The resolutions approved by the Steering Committee in
June/October 2000 were:

OCTOBER 2002

93

XML DESIGN

ASC X12C-COMMUNICATIONS AND CONTROLS

REFERENCE MODEL SUBCOMMITTEE

The ANSI ASC X12 Steering Committee fully supports the continuation of the mission, goals,
and efforts of ebXML. ASC X12 will pursue its XML development efforts within the
framework defined by ebXML.

e X12 will develop accredited, cross-industry, XML business standards. All XML
business standards and associated schema development work will be done in
collaboration with UN/CEFACT Work Groups and shall be based on the
UN/CEFACT business process/core component work.

* The X12 Steering Committee will petition ANSI for official recognition as an ANSI
accredited XML business standards body

e X12C will function as the X12 XML technical experts with respect to all internal
and external XML technical specifications including the development of XML
design rules in conjunction with X12J

e The X12 Steering Committee shall task DISA to begin working with X12X TG4
WG2 to market X12's role in developing ANSI accredited XML business
standards.

e The X12 Steering Committee shall task the Process Improvement Group (PIG)
to include the need to recognize the requirement for an accelerated process for
XML standards development as part of their work plan

* The X12 Steering Committee shall task the Process Improvement Group (PIG)
to work with the Policies and Procedures Task Group (P&P) to provide expertise
and assist the EWG/X12 on the Joint Development Task Group in the
development of an aligned approval process that meets the needs of both
organizations related to the development and maintenance of XML core
components.

Every effort has been made to build on the experience and work done previously by ebXML,
the UN/CEFACT Work Groups, CommerceNet, and ANSI ASC X12 in document definition
methodologies and core components. The X12/XML design rules presented in this
document are based on design decisions reached through a process of issue identification,
presentation of examples, and evaluation of the pros and cons of each available action.
They provide a set of syntax production rules that define the conversion of standardized,
cross-industry business messages into XML documents. Although there may be cases where
an immediate requirement to use XML-based business messages may cause some
subcommittees to work on their own, all are encouraged to monitor the efforts of the
corresponding UN/CEFACT Work Group and submit recommendations to UN/CEFACT as
appropriate. Avoiding duplication of effort is always recommended, when it is possible.

2.0 Overview of ebXML Business Process and Core
Components

The business process determines characteristics of the business document payload. For
example, if the business process is Ordering then the order information must specify details
about the order itself (payment, delivery, references to external business agreements, etc.).
There are certain characteristics of the Order Document, which typically do not vary across
industries, while other details (such as those required because of product type) will vary
dramatically.

Business documents, by their very nature, communicate a semantically complete business
thought: who, what, when, where and why. The what in electronic business terms is typically
the product. It is widely recognized that products are goods or services. Goods are
manufactured, shipped, stored, purchased, inspected, etc., by parties. Services are
performed by parties, and may involve goods and/or parties. Parties can be either
organizations or individuals, and can be associated with other parties and products. And
these products have events associated with them, inspections, transportation, building, sale,
etc.

94

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

This problem is addressed by a combination of structured information and the use of context.
This structure uses a series of layers, designed to take into account commonality across
industry business process. Further the structure is designed to support specialization based
on the specific use of contexts. Context is the description of the environment within which
use will occur. For example, if one was to say that “someone was pounding on my car with a
hammer”, the response is very different depending whether it is a repair shop or a
neighbourhood youth. Context is what is used to direct interpretation.

A component is a ‘building block’ that contains pieces of business information, which go
together because they are about a single concept. An example would be bank account
identification, which consists of account number and account name.

Core components are components that appear in many different circumstances of business
information and in many different areas of business. A core component is a common or
“general” building block that basically can be used across several business sectors. It is
therefore context free.

Re-use is the term given to the use of common core components when they are used for a
specific business purpose. The purpose is defined by the combination of contexts in which
that business purpose exists. Each context specific re-use of a common component is
catalogued under a new business information name ‘that uses core component X'.

A domain component is specific to an individual industry area and is only used within that
domain. It may be re-used by another domain if it is found to be appropriate and adequate for
their use, and it then becomes a core or common component.

Components can be built together into aggregates.

As described above for components, aggregated components can be common components.
These are generic and can be used across several business sectors. They can be re-used
for a specific business purpose, defined by a combination of contexts. Each context specific
re-use of a common aggregate component is catalogued under a new business information
name ‘that uses core component X'.

There are also domain specific aggregated components.

Aggregates and components can be gathered into "document parts". These are useful
assemblies which can individually satisfy a business process’s requirement for information,
or which may be "sewn together" in a structured way to achieve the same. For example, the
structured combination may be to satisfy a business process’s need for information
presented in a particular way for efficiency of processing.

An individual document part and the "sewn together" parts, come at increasingly domain-
specific and context-specific levels. They form documents or partial documents that satisfy a
business process or a part of a business process.

Figure 21 illustrates how core components can be built into business documents by explicitly
linking components with the ebXML Business Process Worksheets, and the underlying
modelling approach. The top right-hand corner of the Figure comes from Figure 8.4-1 in the
ebXML Business Process Overview document.

OCTOBER 2002

95

XML DESIGN

ASC X12C-COMMUNICATIONS AND CONTROLS

REFERENCE MODEL SUBCOMMITTEE

Statement Of

Intent

Requirements

Business document
in a partiCUIar Business Document Definition

<«
context oS o i

#
/Agather

4 2 Documents
I Require- 4
Z

Business Process

Analyze Definition

/——Informamon Document
Docqment < describes content... Schema, XL
partina

. y
particular Peren: |

Business Process r Sen_'vucgl//
ConteXt & Definition Appllc/
$
O

Context Aggregate }/

\" V U Component 1

Component 2

Figure 21

Note that in this instance document parts are pieces of business information required to
satisfy a particular business process, from a specific contextual viewpoint.

3.0 Relationship to other XML Efforts

Since most other XML efforts lack an overriding semantic organization, many efforts have
been directed to production of “bullet” messages. This effort is directly applicable by narrow
definition of the business purpose underlying each Template. In particular, ebXML efforts
have componentry definitions with instances that span several levels. The architecture
proposed here provides a structured mechanism to impose a semantic discipline in this
arena.

Several XML efforts have modeling as a primary tenet. Modeling may prove to be the best
way to develop items at the top levels of this architecture (certainly Templates and Modules
and possibly Assemblies). X12 feels that this architecture allows modeling to be used at high
levels, where it is most effective.

96

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

ANNEX E: Framework Approaches for
Implementing XML Syntax

This annex applies the general recommendations of the syntax section to the semantic
architecture. It presents options for a framework for representing each type of semantic
construct in XML instance documents and schemas. At the time of publication consensus
had not been reached on all of the details, so in many cases two options are presented.
Option A represents the majority position at the time of publication, while Option B represents
the minority position.

1.0 Primitives

Primitives represent the leaves in a tree representation of an instance document.
Option A
Instance Representation - Primitives are represented as XML elements.

Schema Representation - Primitives are represented as simpleTypes, derived from base
schema datatypes.

Option B

Instance Representation - The primitive representing the primary value of a component is
represented as an element. Supplementary values are represented as attributes.

Schema Representation - Supplementary primitives are represented as simpleTypes,
derived from base schema datatypes.

2.0 Components

Components represent the first level of inner nodes in a tree representation of an instance
document. Components are represented as complexTypes.

Option A

Instance Representation - A component is represented as a parent element with named child
elements, in sequence, of allowable primitive types.

Schema Representation - A component is a complexType with named child elements of
types defined for primitives.

Option B_

Instance Representation - A component is a complexType whose value is the primary value
of the component. Supplementary primitives are represented as attributes.

Schema Representation - A component is a complexType with no element children, a type
based on one of the defined primitive types, and a set of named attributes that are of the
types defined for primitives.

OCTOBER 2002

97

XML DESIGN

ASC X12C-COMMUNICATIONS AND CONTROLS

REFERENCE MODEL SUBCOMMITTEE

3.0 Blocks

Blocks represent the second level of inner nodes in a tree representation of an instance
document. Blocks are represented as complexTypes.

Instance Representation - A block is represented as a parent element with child elements, in
sequence, of types allowable for components

Schema Representation - A block is a complexType with named child elements of types
defined for components.

4.0 Assemblies

Assemblies represent the inner nodes in a tree representation of an instance document.
They occur at all of the levels between components and modules, which are one level below
the root element.

Option A
Instance Representation - An assembly is a parent element with child elements

Schema Representation - An assembly is a complexType with named child elements, in
sequence, of types defined for blocks or assemblies.

Option B

Instance Representation - An assembly is not identifiable as such in an instance document.

Schema Representation - An assembly is a model group of elements, each of a type based
on one of the types allowed for blocks or assemblies.

5.0 Modules

Modules represent the first level under the root node in a tree representation of an instance
document.

Instance Representation - A module is represented as a parent element with child elements

Schema Representation - A module is a complexType with named child elements of types
allowed for blocks or assemblies

6.0 Templates

Templates are logical entities with no direct XML representation. This is primarily due to the
fact that they are skeleton documents only, and an XML syntax representation in schema
would therefore be incomplete and not valid.

7.0 Documents
Documents correspond to XML instance documents.
Schema Representation - A document is represented by the root element (with children) of

an XML schema. Each child is a locally hamed element specific to the document, of a
defined module complexType.

98

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

8.0 Modular Organization and Namespace Architecture

The goals of this architecture are:

As nearly as practical, a one-for-one syntax representation of items from the
semantic architecture

Enable re-use at the syntax level by organizations outside of X12

Major aspects of the architecture are:

XML standards follow the one major, two minor release schedule of X12. All
schemas have a root URN namespace, (and corresponding root http URL) of
schemas.x12.org, followed by the major and minor release. eg. Root
namespace urn:schemas.x12.org/005010, root URL
http:schemas.x12.0rg/005010 for major release 005 and minor release 010
(majmin in the following examples).

Items shared by two or more subcommittees have the root namespace URN and
URL of schemas.x12.org/majmin/common

Declarations for shared blocks, components, and assemblies - Are declared in
the common target namespace. If the number is manageable to fit into one
physical schema, it is common.xsd under majmin. If more than one, they are
divided into logical groupings with separate schema files (combined with
xsd:include) under the common directory

Items unique to a subcommittee have the root namespace URN and URL of the
subcommittee in the form of schemas.x12.org/majmin/SubcommitteeDesignator

Declararations for modules (and any blocks, components, or assemblies unique
to a subcommittee) - Are declared under the root subcommittee URN
SubcommitteeDesignator/common, and schema file URL
SubcommitteeDesignator/common.xsd. The X12 common namespace is
imported into each subcommittee common schema.

Document definitions - Are declared under the root subcommittee URN and
URL, with target namespace and schema file specific to the document. The
subcommittee name-space is imported into the schema file.

All element and attribute forms are unqualified. Names from namespaces
imported from another namespace into a schema document must have a
namespace prefix, but local names of the schema target namespace don't need
one. Ininstance documents only the root element requires a namespace prefix.

OCTOBER 2002

99

XML DESIGN ASC X12C-COMMUNICATIONS AND CONTROLS
REFERENCE MODEL SUBCOMMITTEE

100 OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN
SUBCOMMITTEE REFERENCE MODEL

ANNEX F: Architectural Comparison
with Other Initiatives

General Comparison of Approaches

X12

The primary contribution of the X12 CICA approach is to establish strong semantic
granularity and abstractions in Component and Message design. The motivation behind the
design is to develop an architectural approach that achieves three primary objectives, which
on the surface appear as conflicting:

1. ‘Bullet’ documents, semantically explicit and
concise documents fully reflective of the
implementation.

2. Cross industry support, seamlessly supporting
the commonality and differences required to
enable cross industry messaging and
application environments.

2-3. Minimal administration overhead, offering
autonomy to industries needing to produce
immediate solutions, interoperating through the
same cross industry framework.

X12 XML

O —~=>So30W0
—wC

Core Components

In contrast to the X12 XML efforts, UN/CEFACT’s
Core Components work has primarily focused on
the physical details of specifying Core Components
and the least common denominator compositional
semantics, working primarily from a bottom up
approach.

CORE
COMPONENTS

30O TOoWm

The context classification work, including the
identification of Context categories and sources for
specifying Context is very well developed. The
CCT work and the naming convention efforts are Syntax Specificity

substantive and innovative work. >

< ~+~—0—=—0 0T W0

The design objectives utilize context, as an enabler

to innovative new approaches to managing differing Diagram 1
content needs. Further, this effort is committed to

cross industry solutions.

UBL

UBL's stated approach is to start with Core
Components and produce XML schema representations for the initial set of documents. This
approach is designed to be a short-term effort.

Summary of General Comparisons

In general, while at the detail level, many parallels exist between the X12’s CICA work, and
that of the UN/CEFACT Core Components, but conceptually, there is little overlap in subject
areas covered. As illustrated in “Comparison 1", the X12 work has primarily focused on
subjects, which the Core Components works has been silent on — semantic granularity and a
strong document model. In contrast, the Core Components work has primarily focused on

OCTOBER 2002 10 1

XML DESIGN

ASC X12C-COMMUNICATIONS AND CONTROLS

REFERENCE MODEL SUBCOMMITTEE

the representation aspects. Finally, the UBL work is taking content results, and representing
that output in schema.

Specific CICA to Core Component Comparisons

This diagram illustrates a rough comparison between the approach outlined in this document
and the UN/CEFACT Core Components technical specification (CCTS).

X12 XML Design UN/CEFACT CC Tech

Document

Template

Module Business Information Entity|

Assembly

Block Core Component

Component

Diagram 2

As shown in the diagram, there are generally direct relationships among the work efforts, by
design. To try and keep things clear this document will call them all “Parts”.

Neutral Parts

Assemblies, Blocks, and Components are analogous to Core Components. Furthermore,
Components are essentially Basic Core Components, while Blocks & Assemblies are
essentially Aggregate Core Components.

The X12 XML design has imposed three levels of granularity where CCTS has one. This is a
very conscious decision to allow rational rules, appropriate to the wide range in sizes, to be
applied to each level.

These parts are neutral in both approaches, in that “context has not been applied”. Also in
both approaches these parts are designed for reuse in a wide variety of messages.

The X12-Finance Invoice pilot XML project has demonstrated this equivalence and
interchangeability. Approximately 70% of the Components needed were taken from ebXML
financial Core Components. It is the intention of X12F, Finance, to submit the remaining
30% newly created Components to UN/CEFACT for consideration as Core.

Context Applied Parts

Modules are analogous to Aggregate Business Information Entities. In both approaches
these are constructed of the smaller “Neutral Parts”. Also in both approaches these are data
structures of some size and importance.

These parts have “Context Applied” in both approaches. Both BIE’s and Modules are useful
in particular business contexts. Both would be reusable only between business processes
that share most-or-all contexts.

Again, X12-Finance will submit the modules developed in the pilot XML invoice work as BIE’s
for consideration by UN/CEFACT.

102

OCTOBER 2002

ASC X12C COMMUNICATIONS AND CONTROLS XML DESIGN

SUBCOMMITTEE

REFERENCE MODEL

Messages

The X12 XML Design has explicit support for document assembly in the form of Documents,
Templates, and Modules. Templates & Modules allow related messages to be directly
constructed out of a common pool of parts. This approach allows similar messages to be
identical in areas with identical needs, and to differ markedly where needed.

The X12 XML Design approach is also uniquely capable of supporting individual business
needs by the use of proprietary “modules” in “standard” templates.

The CCTS, in its most recent draft out for review, is rather silent on how to create a
“Message”. X12 Communications & Controls intends to propose that the Template and
Document assembly notions be adopted in the CCTS.

XML Syntax & Schema

The X12 XML Design has details dedicated to both XML syntax and the production of
schema for complete messages.

To the extent possible with mutually evolving efforts, the X12 XML Design seeks to be
compatible with the approaches being taken by the OASIS-UBL effort for schema.

« The CCTS is officially “Syntax-Neutral”; no mention is made of particular syntax
details. While XML is the obvious syntax to express the CCTS work in, this is
considered a separate area of work.

OCTOBER 2002

103

XML DESIGN ASC X12C-COMMUNICATIONS AND CONTROLS
REFERENCE MODEL SUBCOMMITTEE

104 OCTOBER 2002

