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Summary. This paper discusses computational issues in kinematic design of tac-
tile sensing �xtures used in robotics applications. It deals with mechanical �xtures
built or modeled by feature surfaces consisting of planes, spheres, and cylinders. It
develops the governing equations for locating each of these geometric objects using
tactile sensing probes. It shows that although four points are needed to locate a
sphere, in many applications sensing three points is su�cient for referencing. In
the case of a cylinder it is shown that in general six points are necessary and that
in many applications �ve points are su�cient for locating the cylinder. The paper
reduces the governing equations for a cylinder to a set of polynomial equations
consisting of a second-degree and a third-degree equation. The solutions of this set
are found using symbolic computations. The results are applied to the kinematic
design and analysis of a mechanical �xture consisting of a sphere and a cylinder as
its feature surfaces.
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1. Introduction

Tactile sensing �xtures are used in robotics and manufacturing { see, for example,
Du�e et al. (1984), McCallion and Pham (1984), Mooring and Pack (1987), Ravani
and Ge (1991), and Slocum (1988) { for part referencing and calibration. This is
the process of determining the relative location of a part with respect to a tool
(such as a machine tool, a robot, or a material-handling system) or with respect to
a world coordinate system. In robot calibration, the position of the end-e�ector is
usually measured at a set of predetermined locations using some form of a sensing
system. This data is then combined with joint-encoder readings from the same set
of locations to update the kinematic parameters of the robot in its programming
system { see, for example, Roth, Mooring and Ravani (1987) or Hollerbach (1988)
{ to improve its positioning accuracy. Since both part-referencing and calibration
require measurements of relative locations between two objects, tactile-sensing me-
chanical �xtures are generally used to simplify the sensing function and to improve
repeatability.

In order for a tactile sensing mechanical �xtures to be useful, a reference frame
must be created out of the geometric contacts made to the surface of the �xture.
Therefore, the geometric feature surfaces and contact conditions are critical to the
design and operation of a practical �xture. This chapter deals with computational
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aspects of localization of feature surfaces using the contact conditions. In particular,
we develop methods for dealing with feature surfaces consisting of planes, spheres,
and cylinders. The results for planes and spheres (in the general case) are known in
some form or another, but the results for cylinder are new as well as some special
cases for spheres.

The work presented in this paper addresses the computational aspect of some of
our recent work (Nederbragt and Ravani, 1996 and 1997) in developing a scienti�c
foundation for the kinematic design of mechanical �xtures.

The organization of the chapter is as follows: First, we discuss part-referencing
based on touch-sensing. We then give methods for �nding a plane, a sphere, and
a cylinder in three-dimensional Euclidean space using a �nite number of points on
the surface of these geometric elements. Finally, learning from our computational
analysis methods, we apply these methods to create a reference frame for a simple
cylinder-sphere reference �xture.

2. Part-Referencing Based on Touch-Sensing

Part-referencing using tactile sensing involves bringing a sensing element into con-
tact with a surface of the part, activating the touch sensor, and measuring the
location of the touch point in the sensor coordinate system. This was the case, for
example, in the system described by Du�e et al. (1984) where a touch sensor was
attached to the end of a robot and it was moved until it contacted the spherical
surface of a �xture. In such a system the location of the touch is only known in the
robot manipulator frame. The shape of the touch surface on the �xture is, however,
completely known. (In this case it is a sphere.)

If several touches are made to the surface, then enough information may be
obtained to determine the relative location of the two frames. Du�e et al. (1984)
used a �xture consisting of three separate spheres of known radii. They found
that four separate touches to each of the spheres made it possible to determine
the location of the �xture with respect to the robot. McCallion and Pham (1984)
used three non-collinear touches to a plane to determine its location in space, and,
using three perpendicular planes of a cube, the relative location of the robot to
the �xture was found. Nederbragt and Ravani (1996, 1997) developed a scienti�c
framework for design of such �xtures. In their work they created several new �xture
geometries and also enumerated the geometric contact combinations necessary for
the elimination of all continuous motions.

With the introduction of many new possible �xture geometries, the next step
is to �nd methods for localizing the feature geometries in space based on the con-
tact conditions. This may require the solution of several non-linear equations using
computational methods. In the next sections, methods for determining the location
of a plane, a sphere, and a cylinder are given. In the case of the plane, the meth-
ods for �nding their location are simple and well known (McCallion and Pham,
1984), but for completeness a common method is given. The sphere case is also well
known. However, we have developed a method that can reduce the number of points
necessary for the determination of the location of the sphere in certain instances.
A method for locating a cylinder is also given. The cylinder case is signi�cantly
more complicated than the sphere or the plane and, therefore, is the main focus of
this paper. The method for �nding its location has applications in �xture design,
coordinate-measuring machines (CMM) and the Burmester theory for the design
of linkages.

The three feature surfaces of planes, spheres and cylinders are the building
blocks for a large number of practical �xture geometries.
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3. Determination of the Location of a Plane Using

Three Points

It is well known that the location of a plane can be found in three-dimensional
Euclidean space if the location of three points on the plane are known (McCallion
and Pham, 1984) (see Figure 1). However, for completeness, a common method is
given.

P1

P2

P3

v 1

v 2
n

Fig. 1. Three points on a plane

Let points p1, p2, and p3 be on a plane where pi = (xi; yi; zi). We now de�ne
two vectors as v1 = p2 � p1 and v2 = p3 � p1. Let n = v1 � v2 = (a; b; c). Since
v1 and v2 are parallel to the plane, n must be normal to the plane. From algebraic
geometry (1939), the equation of the plane is:

a(x� x1) + b(y � y1) + c(z � z1) = 0 (1)

or, in general form
ax+ by + cz + d = 0 (2)

where d = �ax1 � by1 � cz1.

4. Determination of the Location of a Sphere Using

Three Points

In general, it takes four points on the surface of a sphere to determine the radius
and the center of that sphere (Du�e et al., 1984). This is well known. However, if
the radius of the sphere is already known (this is always the case for referencing
�xtures), then three points on the surface of the sphere will give two possible
solutions (see Figure 2). If a touch probe is being used to make the point contacts to
the sphere, then the orientation of the probe during contact can be used to possibly
eliminate the incorrect sphere out of the two possible solutions. This makes the use
of spheres for referencing more appealing because a three-sphere �xture may require
signi�cantly less than the twelve contacts used by Du�e et al. (1984) to make a
complete reference measurement.

An algebraic method is given in the next section that will determine the location
of a sphere of known radius. An example is also given that uses this algebraic
method.
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Fig. 2. Three points on a sphere gives two possible solutions

4.1 Algebraic Method

The general equation for a sphere in space is

(x� a)2 + (y � b)2 + (z � c)2 � r2 = 0; (3)

where (a; b; c) is the center of the sphere and r is the radius of the sphere.
Given the points pi = (xi; yi; zi) for i = 1 to 3 on the surface of a sphere of

radius r, the following three equations must be satis�ed:

(x1 � a)2 + (y1 � b)2 + (z1 � c)2 = r2; (4)

(x2 � a)2 + (y2 � b)2 + (z2 � c)2 = r2; (5)

(x3 � a)2 + (y3 � b)2 + (z3 � c)2 = r2: (6)

If we subtract eq. 5 from eq. 4 we obtain

(x2 � x1)a+ (y2 � y1)b+ (z2 � z1)c+

0:5(x1
2 � x2

2 + y1
2 � y2

2 + z1
2 � z2

2) = 0: (7)

If we subtract eq. 6 from eq. 4 we obtain

(x3 � x1)a+ (y3 � y1)b+ (z3 � z1)c+

0:5(x1
2 � x3

2 + y1
2 � y3

2 + z1
2 � z3

2) = 0: (8)

Using eq. 7 and eq. 8, we can solve for a and b in terms of c, namely,

b = [2(�x2z1 + x3z1 + x1z2 � x3z2 � x1z3 + x2z3)c+ x1
2x2

�x1x22 � x1
2x3 + x2

2x3 + x1x3
2 � x2x3

2 + x2y1
2 � x3y1

2

�x1y22 + x3y2
2 + x1y3

2 � x2y3
2 + x2z1

2 � x3z1
2 � x1z2

2

+x3z2
2 + x1z3

2 � x2z3
2]M (9)

and

a = [2(y2z1 � y3z1 � y1z2 + y3z2 + y1z3 � y2z3)c+ x2
2y1

�x32y1 � x1
2y2 + x3

2y2 � y1
2y2 + y1y2

2 + x1
2y3 � x2

2y3

+y1
2y3 � y2

2y3 � y1y3
2 + y2y3

2 � y2z1
2 + y3z1

2 + y1z2
2

�y3z22 � y1z3
2 + y2z3

2]M (10)
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where M = 1=[2(x2y1 � x3y1 � x1y2 + x3y2 + x1y3 � x2y3)].
Equations 9 and 10 can be substituted into eq. 4 to leave a quadratic equation

in terms of the variable c. This equation can be solved for the two values of c. These
values can be substituted back into eqs. 9 and 10 to obtain two center points for the
sphere. Let the center points be Center1 = (a1; b1; c1) and Center2 = (a2; b2; c2).

q

pt .  P

Center1

Center2

q

(a) (b)

Fig. 3. Elimination of one of two sphere centers

If a touch sensor is being used to make contact with the sphere, then the knowl-
edge of the orientation of the sensor relative to the two possible spheres may possibly
eliminate one of the two mathematical solutions, hence, leaving the correct solu-
tion. Let q be the vector pointing in the direction of the touch sensor. Let p be the
position of the touch to the surface of the sphere. From Figure 3a, it can be seen
that the center of the sphere must be located \lower" than point p. From Figure 3b,
one of the two spheres cannot be possible because the touch sensor must intersect
that sphere to reach point p. Therefore, we can eliminate the sphere that does not
satisfy the following equation:

(p� Centeri) � q < 0: (11)

If both sphere centers pass this test for all three points, then another point will
be necessary to eliminate one of the sphere centers.

4.2 An Example

If we let r = 2, p1 = (1; 0; 0), p2 = (0; 1; 0), p3 = (�1; 0; 0), and q = (�4; 1; 1) for
point p1, then eqs. 4, 5, and 6 become

(1� a)2 + (b)2 + (c)2 = 4; (12)

(a)2 + (1� b)2 + (c)2 = 4; (13)

(�1� a)2 + (b)2 + (c)2 = 4: (14)

From eqs. 7 and 8 we �nd that a = b = 0. Plugging these results into eq. 12,
we �nd c = �

p
3. Therefore, our possible center points are Center1 = (0; 0;+

p
3)

or Center2 = (0; 0;�
p
3). Using q, Center1 cannot be possible because

[P1 � Center1] � q = [(1; 0; 0)� (0; 0;
p
3)] � (�4; 1; 1)

(1; 0;�
p
3) � (1; 1;�4) = 1 + 4

p
3 > 0: (15)

Hence, the sphere center must be Center2 = (0; 0;�
p
3).
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5. Determination of the Location of a Cylinder Using

Five Points

The Location of a cylinder of known radius, in general, can be found in three-
dimensional Euclidean space if �ve points on the surface of the cylinder are known.
There are several di�erent ways of representing a cylinder. However, a method used
by Schaal (1985) develops algebraic equations using a minimal set of variables. This
method has been extended for application here. In the next section, the algebraic
equations for �nding a cylinder are derived. An example using the derived method
is also given.

5.1 Equation Formulation

In order to �nd the location of a cylinder in space using a �nite number of points
on its surface, a general equation for a cylinder needs to be formulated. We use the
equation developed by Schaal (1985) since it describes a cylinder in a form suitable
for our subsequent developments. Here we give a derivation of this equation.

a'

a

o

x

r

f

(x-a)

s

x

α

Fig. 4. Analytical model of a cylinder

In Figure 4, a cylinder is given with the following properties: r is the radius of
the cylinder, x and o are points on the surface of the cylinder, a and a0 are points
on the axis of the cylinder, s is a vector in the direction of the axis of the cylinder,
� is the angle between s and (x-a), x is a vector from point o to point x, and f is a
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vector from point o to the axis of the cylinder where f is perpendicular to s. From
Figure 4 and vector analysis it is obvious that

r = j(x� a)j sin�: (16)

Also from vector analysis we know that the cross product between two vectors is
equal in magnitude to the product of the magnitudes of the vectors times the sine
of the angle between the two vectors. Using this property and eq. 16 we obtain,

j(x� a)� sj = j(x� a)jjsj sin� = (j(x� a)j sin�)jsj = rjsj: (17)

Letting jjvjj2 = v � v, eq. 17 can be written as,

jj(x� a)� sjj2 = r2jjsjj2 or jj(x� a)� sjj2 � r2jjsjj2 = 0: (18)

Equation 18 is a general equation for a cylinder. We will now proceed to change
this equation to only leave the variable s.

The left side of eq. 18, substituting (x� a) = x� f , can be written as

jj(x� a)� sjj2 = [(x� f)� s] � [(x� f )� s]: (19)

Using the vector equation

(a+ b)� c = (a� c) + (b� c); (20)

(x� f)� s can be written as

(x� f)� s = (x� s)� (f � s): (21)

Substituting � = f � s into the right side of eq. 21, we obtain

(x� s)� (f � s) = (x� s)� �: (22)

Substituting eq. 22 into eq. 19, we obtain

jj(x� a)� sjj2 = [(x� s)� �] � [(x� s)� �]: (23)

Using the vector equation

(a+ b) � (c+ d) = a � c+ a � d+ b � c+ b � d; (24)

equation 23 can be written as

jj(x� a)� sjj2 = jjx� sjj2 + jj�jj2 � 2[(x� s) � �]: (25)

We already know that
(x� s) � � = (x� s) � (f � s) (26)

from our de�nition of �. Using the vector equation

(a� b) � (c� d) = (a � c)(b � d)� (a � d)(b � c); (27)

equation 26 can be written as

(x� s) � (f � s) = (x � f)(s � s)� (x � s)(s � f): (28)

If we let s be normal to f then (s � f) = 0. This changes eq. 28 to

(x� s) � (f � s) = (x � f)(s � s) = (x � f )jjsjj2: (29)
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Substituting eq. 29 into eq. 25, we obtain

jj(x� a)� sjj2 = jjx� sjj2 + jj�jj2 � 2(x � f)jjsjj2: (30)

Substituting eq. 30 into eq. 18, we obtain

jjx� sjj2 + jj�jj2 � 2(x � f)jjsjj2 � r2jjsjj2 = 0: (31)

Since we let f be normal to s, the magnitude of f must be equal to the radius of
the cylinder. Therefore, j�j = j(f � s)j = jf jjsj. Hence,

jj�jj2 � r2jjsjj2 = 0: (32)

Using eq. 32, eq. 31 becomes

jjx� sjj2 � 2(x � f)jjsjj2 = 0: (33)

Let x1, x2, x3, x4, and x5 be the points on the surface of the cylinder. Let x5
be the point o, and let pi = xi � x5 for i = 1 to 4. With these changes, eq. 33 can
be written as

(pi � f)�
1

2jjsjj2 jjpi � sjj2 = 0 for i = 1 to 4: (34)

Expanding eq. 34 into a component form using p1, p2, and p3, we obtain"
p1x p1y p1z
p2x p2y p2z
p3x p3y p3z

#"
fx
fy
fz

#
� 1

2jjsjj2

" jjp1 � sjj2
jjp2 � sjj2
jjp3 � sjj2

#
= 0: (35)

If we let

M =

"
p1x p1y p1z
p2x p2y p2z
p3x p3y p3z

#
; (36)

then

M�1 =
1

det[M ]

"
(p2 � p3)x (p3 � p1)x (p1 � p2)x
(p2 � p3)y (p3 � p1)y (p1 � p2)y
(p2 � p3)z (p3 � p1)z (p1 � p2)z

#
: (37)

Multiplying both sides of eq. 35 by M�1 gives"
fx
fy
fz

#
=

W

2jjsjj2 det[M ]

" jjp1 � sjj2
jjp2 � sjj2
jjp3 � sjj2

#
(38)

where

W =

"
(p2 � p3)x (p3 � p1)x (p1 � p2)x
(p2 � p3)y (p3 � p1)y (p1 � p2)y
(p2 � p3)z (p3 � p1)z (p1 � p2)z

#
: (39)

Let n1 = p2 � p3, n2 = p3 � p1, and n3 = p1 � p2. Substituting n1, n2, and n3

into eq. 38 and multiplying both sides of the equation by s we obtain

[s]

"
fx
fy
fz

#
=

s

2jjsjj2 det[M ]

"
n1x n2x n3x
n1y n2y n3y
n1z n2z n3z

#" jjp1 � sjj2
jjp2 � sjj2
jjp3 � sjj2

#
: (40)
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Since s � f = 0, the two sides of eq. 40 must be equal to zero. The right side of the
equation now becomes

�
sx sy sz

�" n1x n2x n3x
n1y n2y n3y
n1z n2z n3z

#" jjp1 � sjj2
jjp2 � sjj2
jjp3 � sjj2

#
= 0: (41)

Equation 41 is the equation Schaal (1985) derived for a cylinder. This equation
describes a cylinder in three-dimensional Euclidean space using vector s and four
points on the surface of the cylinder.

Vector s describes the direction of the center line of the cylinder. It can be
denoted as (sx; sy; sz). The actual magnitude of the vector is not important for our
case; therefore, we can set one of the vector components equal to one. Let sz = 1.
For this case, vector s must not be parallel to the x-y plane; if it is, then sx or sy
will tend to in�nity during a calculation of s. If this happens, then either sx or sy
should be set to one instead of sz. Note that it is unlikely that a vector will have
any directional components equal to zero using an actual robot end-e�ector frame;
hence, any real calculations should work with sz = 1.

Using s = (sx; sy; 1) means that there are two unknowns, sx and sy, yet we
only have one equation, eq. 41. Therefore, another equation is necessary for the
calculation of s. If we add another point on the surface, x4 where p4 = x4 � x5, to
eq. 35, then we obtain2

64
p1x p1y p1z
p2x p2y p2z
p3x p3y p3z
p4x p4y p4z

3
75
"

fx
fy
fz

#
� 1

2jjsjj2

2
64

jjp1 � sjj2
jjp2 � sjj2
jjp3 � sjj2
jjp4 � sjj2

3
75 = 0: (42)

From linear algebra (Roberts, 1985), Eq. 42 is only valid if

det

2
64

p1x p1y p1z jjp1 � sjj2
p2x p2y p2z jjp2 � sjj2
p3x p3y p3z jjp3 � sjj2
p4x p4y p4z jjp4 � sjj2

3
75 = 0: (43)

Equation 43 is a second-degree equation. Using eqs. 41 and 43, vector s is, in
general, solvable using sz = 1. The two equations can be written in the general
form

asx
3
+ bsy

3
+ csx

2
sy + dsxsy

2
+ esx

2
+ fsy

2

+gsxsy + hsx + isy + j = 0 (44)

and
ksx

2 + lsy
2 +msxsy + nsx + psy + q = 0: (45)

Equations 44 and 45 can be combined to form one equation of degree six in only
one variable using Sylvester's Method (Boehm and Prautsch, 1994). This equation
can be solved numerically to obtain six possible solutions for one of the variables,
sx or sy. Using eq. 45, the other variable can be found. Therefore, we will have
six possible solutions for the cylinder axis direction s. We still need to �nd a point
on the center line of the cylinder to de�ne the location of the cylinder in space.
We will do this by using three of the points on the surface to create a circle on a
plane perpendicular to the cylinder and �nd the center of this circle, as shown in
Figure 5.

When we �nd the center of the circle, we can also calculate the radius of the
circle, which is also the radius of the cylinder. Since we know the radius of the
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x1

x2

x3

a

s

Plane perpendicular
to the cylinder and
containing point x1

Fig. 5. Finding a point on the center line of a cylinder

cylinder already, we can eliminate the cases where the calculated radius does not
match the actual radius. This should leave only the correct cylinder result. In the
next section, an example is given to illustrate the cylinder �nding process.

5.2 An Example

Let x1 = (2.927025, 2.000000, 1.625000), x2 = (1.775000, 2.800000, 1.443785), x3
= (1.372975, 2.600000, 3.116620), x4 = (2.075000, 3.40000, 2.185405), and x5 =
(3.527025, 3.200000, 3.108240) be �ve points on the surface of a cylinder of radius
r = 1:000000. These points correspond to a cylinder of radius one and a center
line (de�ned using a vector and point) of vector s = (0.300000, 0.600000, 0.741620)
and point O = (2, 2, 2). Since the answer is known, the results of the example can
be veri�ed. Using equation pi = xi � x5 for i = 1 to 4, we �nd p1 = (-0.600000,
-1.200000, -1.483240), p2 = (-1.752025, -0.400000, - 1.664455), p3 = (-2.154050,
-0.600000, 0.008380), and p4 = (-1.452025, 0.200000, -0.922835).

Using the values for pi, eq. 41 written in the form of eq. 44 becomes

�1:785361 � 5:257678sx + 3:124352s2x � 0:504446s3x

+0:489010sy + 16:119020sxsy + 0:854990s2xsy � 3:701228s2y

+4:371015sxs
2

y � 2:048000s3y = 0: (46)

Using the values for pi, eq. 43 written in the form of eq. 45 becomes

0:724860 � 9:049719sx + 0:875140s
2

x + 0:316760sy

�5:049719sxsy + 6:400000s2y = 0: (47)

Using an equation-solver, eqs. 46 and 47 are solved for s. Six solutions exist for
this case, two of which are real, namely, s = (-257.042261,-71.59786,1.00000) and s
= (0.40452,0.80904,1.00000).

Using the values of s, we calculated the values for the radius of the cylin-
der and a point on the axis of the cylinder. Table 1 shows the results. We know
the radius for this particular case is exactly one. Hence, the case that has a ra-
dius that is very close to one should be the correct cylinder. The case with s =
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Table 1. List of possible cylinder locations

s Radius of cyl. Point on the axis

(�257;�71:6; 1) r = 0:9165 (2:751; 2:640; 2:257)
(0:405; 0:809; 1) r = 1:00000 (2; 2; 2)

(0.404520,0.809040,1.000000) has a mathematically determined radius of 1:000000.
Therefore, it is the correct cylinder. This matches the expected result (note: s needs
to be normalized to match the expected result).

If the actual radius of the cylinder was not known ahead of time, then an addi-
tional point on the cylinder would be needed to eliminate the incorrect solutions.
However, this would not happen when working with reference �xtures because the
user designs the �xture.

6. Fixture Analysis Example

We now have the computational tools to �nd a plane, a sphere, and a cylinder
in space. To emphasize the use of these methods, we will give an example of a
�xture with feature surfaces consisting of a sphere and a cylinder (a cylinder-sphere
�xture). Figure 6 shows a possible design of a cylinder-sphere �xture. The limited
touch area on the cylinder is needed to determine the direction of Y. VectorY must
be parallel to the axis of the cylinder; however, this leaves two possible directions.
By limiting the touch sensitive surface of the cylinder to be above or below the
sphere, we can always pick the correct direction.

Touch Sensing
Cylindrical
Surface

Touch Sensing
Spherical
Surface

Non-Touch Sensing Surfaces

X

Y

Z

Fig. 6. A cylinder-sphere �xture and its frame
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The creation of a reference frame from the geometric elements is quite simple
as can be seen in Figure 6. Vector Y points along the axis of the cylinder, vector
X is parallel to the shortest line between the axis of the cylinder and the center
of the sphere, and vector Z is the cross product X�Y. The origin of the frame is
the intersection between the axis of the cylinder and the line created by �nding the
shortest distance between the center of the sphere and the axis of the cylinder.

Based on the frame construction just described, the information needed to create
the frame is the location of the axis of the cylinder and the center of the sphere.
Therefore, given �ve point-contact locations on the cylinder and three point-contact
locations on the sphere, we should be able to create a reference frame using the
methods described earlier. For this case, if the shortest distance between the sphere
and the cylinder is known, then one less point on the sphere is necessary. In the
area of �xture design, the �xture is designed; therefore, the distance between all of
its geometric elements are known. This is shown in the example calculations.

For this example we will use the cylinder values from the cylinder analysis
in the previous section. Hence, we know that s = (0.300000, 0.600000, 0.741620)
and O = (2, 2, 2). Let x6 = (5.456074, 4.600000, 2.543645) and x7 = (5.981074,
4.400000, 3.841479). The points x6 and x7 are two points on the surface of the
sphere. The analysis model for this cylinder-sphere example is shown in Figure 7.
Let the shortest distance d between the sphere and the axis of the cylinder be
3.000000. All of these values were chosen to correspond to a sphere of radius one
with a center located at (5.681074, 3.800000, 3.099860). In our example we will let
the center of the sphere be (cx; cy; cz), and, using the given values, try to �nd the
correct center value.

pt. O

pt.  C

d

v =
 C

 -  
O

s

(q1,x1)

(q2,x2)

(q3,x3)

(q4,x4)

(q5,x5)

(q6,x6)

(q7,x7)

Fig. 7. Analysis of a cylinder-sphere �xture



Computational Issues in the Kinematic Design of Tactile Sensing Fixtures 13

We know that the two points on the sphere must satisfy the general equation
for a sphere of unit radius. Therefore, the following equations must hold:

(5:456074 � cx)
2 + (4:600000 � cy)

2 + (2:543645 � cz)
2 = 1: (48)

(5:981074 � cx)
2 + (4:400000 � cy)

2 + (3:841479 � cz)
2 = 1: (49)

Also the shortest distance between the axis of the cylinder and the center of the
sphere must be 3.00000. From Figure 7 and vector analysis, we know

d =
js� vj
jsj : (50)

Vector s is given as a unit vector for our calculations. Therefore, the denominator
for eq. 50 is one. Equation 50 can be rewritten as

d2 = (s� v) � (s� v): (51)

Equations 48, 49, and 51 can be solved to �nd the possible values of the sphere cen-
ter. However, if eq. 48 is subtracted from eq. 49, then a linear equation is produced.
If this resultant equation is substituted for one of the quadratic sphere equations,
then there will be only four solutions instead of eight. Therefore, this is a good
computational simpli�cation.

Solving these equations we get four solutions, two of which are real. They are
(5.600545, 5.180286, 3.345141) and (5.681074, 3.80000, 3.09986). Obviously, the
second solution is the one we are looking for. If we have the probe orientation
vectors for each contact qi, then we may be able to eliminate the incorrect solution
as we did in the previous sphere example. With the correct sphere center and the
axis of the cylinder known, the complete reference frame can be created.

7. Conclusion

In this paper, we presented computational methods encountered in kinematic design
of tactile sensing �xtures. The methods given make it possible to localize spheres,
planes, and cylinders in space using relatively simple algebraic-geometric principles.
A detailed example of a cylinder-sphere �xture was given to illustrate these ideas.
The results, in addition to their applications in �xture design and analysis, can
be applied in other areas of kinematics, including in three-dimensional Burmester
theory.

References

Boehm W. and Prautzsch H. (1994), Geometric Concepts for Geometric Design, A
K Peters, Wellesley, MA.

Du�e N., Bollinger J., Van Aken L., et al. (1984), A Sensor Based Technique for
Automated Robot Programming, Journal of Manufacturing Systems, vol. 3,
pp. 13{26.

Hollerback J. M. (1988), A survey of Kinematic Calibration, In Robotics Review,
pp. 208{242.



14 Authors Suppressed Due to Excessive Length

McCallion H. and Pham D. T. (1984), On Machine Perception of the Relative
Position of Two Objects Using Bilaterial Tactile Sensing Systems, Proceedings
of the Institution of Mechanical Engineers, vol. 198B, pp. 179{186.

Mooring B. W. and Pack T. J. (1987), Aspects of Robot Repeatability, Robotica,
pp. 223{239.

Nederbragt W. W. and Ravani B. (1996), Type Synthesis of Contact Sensing Ele-
ments for Robotic Fixturing, Eleventh CISM-IFToMM Symposium on Theory
and Practice of Robots and Manipulators.

Nederbragt W. W. and Ravani B. (1997), Design of Tactile Fixtures for Robotics
and Manufacturing, ASME Journal of Mechanical Design, June.

Ravani B. and Ge Q. J. (1991), Kinematic Localization for World Model Calibration
in O�-Line Robot Programming Using Cli�ord Algebra, Proc. IEEE Interna-
tional Conference on Robotics and and Automation, Sacramento, California,
pp. 584{589.

Roberts A. W. (1985), Elementary Linear Algebra, Benjamin-Cummings Publish-
ing, Reading, MA.

Roth Z. S., Mooring B. W. and Ravani B. (1987), An Overview of Robot Calibra-
tion, IEEE Journal of Robotics and Automation, vol. Ra-3, pp. 377{385.

Schaal H. (1985), Ein Geometrisches Problem der Metrischen Getriebesyntheses,
Sitzungsberichte der Osterreichischen Akademie der Wissenschaften, Wien.

Slocum A. H. (1988), Kinematic Couplings For Precision Fixturing { Part 1, Pre-
cision Engineering, vol. 10, pp. 85{91.

Spencer W. A. (1939), Basic Principles of Analytic Geometry, The Orthovis Com-
pany { educational publishers, Chicago.


