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Abstract
Although AI planning techniques can poten-
tially be uaefuI in severaI manufacturing do-
mains, this potential remains largely unreal-
ized. In order to adapt AI planning techniques
to manufacturing, it is important to develop
more realistic and robust ways to address issues
important to manufacturing engineers. Fur-
thermore, by investigating such issues, AI re-
searchers may be able to discover principles
that are relevant for AI planning in general.
As an example, in this paper we describe the
techniques for manufacturing-operation plan-
ning used in IMACS (Interactive Manufactura-
bility Analysis and Critiquing System), and
compare and contrast them with the techniques
used in classical AI planning systems. We de-
scribe how one of IMACS’s planning techniques
may be useful for AI planning in general-and
as an example, we describe how it helps to ex-
plain a puzzling complexity result in AI plan-
ning.

1 Introduction
AI planning techniques can potentially be useful in sev-
eral manufacturing domains. However, with the ex-
ception of manufacturing scheduling, previous appli-
cations of AI planning technoIogy to manufacturing
(cf. [Famili et al., 19921)  generally have had little im-
pact on manufacturing practices [Ham and Lu, 1988;
Nevins and Whitney, 1989; Shah et al., 19941.

One reason for this difficulty appears to be the dif-
ferent world views of AI planning researchers and manu-
facturing planning researchers. The first author works in
both worlds-and his work on manufacturing planning
has significantly  influenced his research on AI planning,
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and vice versa-but this influence is not particularly ev-
ident in the publications themselves, because they were
written to address two different audiences, who have dif-
ferent ideas of what the important problems are and how
they should be solved:

Since AI planning researchers  are usually more
interested in general conceptual problems than
domain-dependent details, the AI approach to man-
ufacturing planning has typically been to create an
abstract problem representation that omits unim-
portant details, and look for ways to solve the ab-
stract problem. From the viewpoint of the manu-
facturing engineer, these “unimportant details” of-
ten are very important parts of the problem to,be
solved-and this can lead manufacturing engineers
to view AI planning techniques as impractical.
Manufacturing planning nsearchers  typically want
to solve a particular manufacturing problem, and
present their research results within the context of
this problem, without discussing how the approach
might generalize to other planning domains. For
AI researchers, this makes it diEcult to see what
the underlying conceptual problems are, or whether
the approach embodies a general idea that can be
applied to other problems. This can lead AI plan-
ning researchers to view manufacturing planning as
a domain fti of ad-hoc, domain-specific programs
rather than general principles and approaches.

Some of the issuea arising in manufacturing planning
are similar to issuea investigated in AI planning, and
others are distinctiy different. Some of the former may
amenable to the use of existing AI planning techniques-
and some of the latter may lead to new principles useful
in AI planning. However, to investigate such issues, AI
researchers will need a better understanding of manufac-
turing problems and concerns, so as to get better ideas
of what the interesting generalizations are, and which
techniques from AI might best be applied to realistic
manufacturing problems.

In this paper we attempt to provide a step in this di-
rection, by describing the planning techniques used in
IMACS, a computer system for helping designers pro-
duce designs that are easier to manufacture [S. Gupta et
al., 1994b; S. Gupta and Nau, 19951. IMACS analyzes
the manufacturabiiity  of proposed designs for machined
parts by generating and evaluating operation plans for



definitions of machining features; as shown in Figure 4,
we consider a machining feature to include information
about. the type of machining operation, the material  re-
moval volume (the volume of space in which material can
be removed), and the accessibility volume (the volume
of space needed for access to the part).

2.2 Feature Extraction
Although much psst work on integrating design with
manufacturing planning has involved feaiun-based de-
sign techniques in which users specified designs directly
as sets of form features, most researchers have become
convinced that a single set of features cannot satisfy
the requirements of both design and process planning-
instead, some form of feature extraction is needed. For
IMACS, we have developed algorithms to extract ma-
chining features directly from the CAD model [Regli ef
al., 1994; S. Gupta ef of., 1994aj.

There can be many-sometimes infinitely many-
different machining feature3 capable of creating various
portions of a given part. of these, we define a primoqt
feature to be a feature that contains as much of the stock
as possible without intersecting with the part, and as lit-
tle space as possible outside the stock. Figure 5 shows
examples of primary and non-primary features; for a de-
tailed definition see [S. Gupta and Nau, 19951.

As described in [S. Gupta ef al., 1995; Regli cl al.,
19951,  in every operation plan that IMACS will ever want
to consider, each machining operation will create either
a primary feature or a truncation of a primary feature
and the number of primary features for a part is always
finite (in fact, polynomial). Thus, IMACS’s first step is
to find the set 3 of all primary features for P and S. For
example, for the socket PO the set 3 contains 22 primary
features, a few of which are shown in Figure 6.

In AI terms, machining operations are elementary ac-
tions and machining features are tasks. 3 is the set of
all tasks that might ever be relevant for achieving the
goal. Unlike most AI planners, IMACS finds this set in
advance before it begins to generate plans-but 88 we
discuss later, this technique may be useful in a number
of AI planning problems.

2.3 Generating Incomplete Plans
Figure 6 shows that the features in 3 may overlap in
complicated ways, and not alI of them are needed to cre-
ate the part (for example, we do not need to machine
both sl and ~2). A fecfwv-based  model (FBM) is any
irredundant subset of features  F G 3 such that sub-
tracting those features from S produces P. For example,
Figure 7 shows an FBM, FBMl,  for the socket PO.

In AI planning terminology, an FBM is an incomplete
plan: if we can machine the features in it, this will create
the part. Since each FBM is a subset of 3, FBM’s can
be generated using set-covering techniques, but there can
be exponentially many FBM’s. As an example, for the
socket PO, 3 contains 22 primary features from which
one can form 512 FBM’s. In general, we usually wilI not
want to generate all of these FBM’s, for only a few of
them will Iead to good opuation plans. Thus IMACS
does a depth-first branch-and-bound search to gener-
ate and test FBM’s one at a time, pruning unpromising 3

stock S part P

not primary: not primary: Primary
too short too long

Figure 5: Non-primary and primary driiling features.

Figure 6: A few of the 22 primary features for the socket
PO. sl, s2, s9, and ~10.  are end-milling features; hl and
h2 are drilling features.

Figure 7: Feature+based model FBMl for the socket PO.



Figure 9: Task decomposition in IMACS.
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Modify goals. Suppose features f and g overlap, and
f precedes g in some total ordering. Then when we
machine f, we are also machining part of g. We
don’t want to machine that same portion of g again
later in the sequence, because we would merely be
machining air. Thus, IMACS truncates g to remove
the portion covered by f. As an example, several of
the features shown in Figure 8(a) were produced by
truncating the corresponding features in FBMl.
Unlineorize. Once the truncated features have
been produced, several of the resulting FBM’s may
have identical features but different precedence con-
straints. In such casea the precedence constraints
that differ can be removed, translating the total or-
ders into partial orders. For example, Figure 8(b)
shows the partial order for the FBM of Figure 8(a).

Additional Steps
To obtain an operation plan from the partially-ordered
FBM, IMACS usea the following steps:

l IncorpomZe  finishing opemtions. For faces with
tight surface finishes or tolerances, IMACS adds
finishing operations, with precedence constraints to
make them come after the corresponding roughing
operations. Currently, one finishing operation per
face is allowed.

l Determine Mnps.  On a threeaxis vertical rn*
chining center, features cannot be machined in the
same setup unless they have the same approach di-
rection. This and the partial ordering constraints
can be used to determine which features can be
machined in the same setup, as shown in Fig-
ure 8(b). Although the specific computations are
different, the problem is a special case of what
is known to AI researchers as the plan-merging
problem [Yang eZ aL, 1992; Foulser  ei al., 1992;
Britanik and Marefat,  19951.

l Determine process details. To select cutting param-
eters such as those shown in Figure 8(c), IMACS
usea the recommendations of the Machinability
Data Center’s handbook [Machinability Data Cen-
ter, 19801.  The maximum recommended cutting pa-
rameters are used, rather than attempting to se-
lect optimal cutting parameters; thus IMACS’s es-
timates involve considerable approximation.

As shown in Figure 9, these steps correspond to a task
decomposition somewhat analogous to that used in HTN
planning [Sacerdoti, 1977; Tate, 1977; Wilkins, 1990;
1988; Yang, 1990; Kambhampati and Hendler, 1992;
Erol ei al., 1995a; 19941.

Since each FBM can lead to several different opers
tion plans, IMACS does the above steps inside a depth-

Table 1: Estimated production time for the operation
plan shown in Figure 8.

Operation Time (min) Operation Time (min)
d ‘11 hl
d:l h3

2.3 ml11  s2 5.0
mill s4 5.0

drill h5
d&h7

o”*i
0:s

mill s6 5.0
mill s8 5.0

drill h9 mill a9 4.0
drill hll mill SlO 4.2

1 drill h12 0.3 1 3 setups 6.0
Total Time: 39

1
minutes

described in Section 2.6 in order to find the optimal op-
eration plan. For example, Figure 8 shows the operation
plan IMACS finds for the socket PO.

2.6 Operation Plan Evaluation
Once IMACS has found an operation plan, it evaluates
whether the plan can achieve the design tolerances. To
verify whether a given operation plan wiil satisfy the
design tolerances, IMACS must estimate what toler-
ances the operations can achieve. Typical approaches
for computer-aided tolerance charting are computation-
ally very intensive, and only consider limited types of
tolerances [Ji, 1993; Mittal et al., 1990].  Thus, IMACS
simply evaluates the manufacturability aspects- of a wide
variety of tolerancea without getting into optimization
aspects, as described in [S. Gupta and Nau, 19951.  As
an example, the operation plan shown in Figure 8 sat-
i&s the tolerances shown in Figure 3, and thus is &n
acceptable way to make PO from So.

If the plan can achieve the design tolerances, then
IMACS estimates the plan’s manufacturing time. The
total time of a machining operation consists of the cut-
ting time (when the tool is actually engaged in machin-
ing), plus the non-cutting time (tool-change time, setup
time, etc.). Methods have been developed for estimat-
ing the fixed and variable costs of machining operations;
our formulas for estimating these coats are based on stan-
dard handbooks related to machining economics, such as
[Winchell, 1989; Wilson and Harvey, 19631.  As an exam-
ple, Table 1 shows the estimated production time for the
operation plan of Figure 8.

2.7 Efaciency Considerations
As described in [S. Gupta et al., 1994b;  S. Gupta and
Nau, 19951,  IMACS uses a depth-first branch-and-bound
search to generate and evaluate FBM’s and plans one at
a time. By evaluating them as they are being gener-
ated and keeping track of the best one it has seen so
far, IMACS can discard FBM’s and plans that look un-
promising, even before they have been fully generated.
For example, from the 22 primary features shown in Fig-
ure 6 one can form 512 FBM’s for the socket PO, but
IMACS generates only 16 of these FBM’s. Below are
some of IMACS’s  pruning criteria, which can be thought
of as similar to critics in HTN planning:
l IMACS will discard an FBM if it contains features

whose dimensions and tolerancea appear unreason-
able. Examples would include a hole-drilling oper-

first branch-and-bound search, evaluating the plans aa 5 ation having too large a length-to-diameter ratio;
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